
MELSEC iQ-F
FX5 Programming Manual (Program Design)

1

SAFETY PRECAUTIONS
(Read these precautions before using this product.)

Before using the FX5 PLCs, please read the manual supplied with each product and the relevant manuals introduced in that

manual carefully and pay full attention to safety to handle the product correctly.

Store this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user.

INTRODUCTION
This manual describes the instructions and functions required for programming of the FX5. Please read this manual and the

relevant manuals and understood the functions and performance of the FX5 PLCs before attempting to use the unit.

It should be read and understood before attempting to install or use the unit. Store this manual in a safe place so that you can

take it out and read it whenever necessary. Always forward it to the end user.

When utilizing the program examples introduced in this manual to the actual system, always confirm that it poses no problem

for control of the target system.

Regarding use of this product

 � This product has been manufactured as a general-purpose part for general industries, and has not been designed or

manufactured to be incorporated in a device or system used in purposes related to human life.

 � Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger

movement vehicles, consult with Mitsubishi Electric.

 � This product has been manufactured under strict quality control. However when installing the product where major

accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note

 � If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is

qualified and trained to the local and national standards. If in doubt about the operation or use, please consult the nearest

Mitsubishi Electric representative.

 � Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after

confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual

use of the product based on these illustrative examples.

 � This manual content, specification etc. may be changed without a notice for improvement.

 � The information in this manual has been carefully checked and is believed to be accurate; however, if you have noticed a

doubtful point, a doubtful error, etc., please contact the nearest Mitsubishi Electric representative. When doing so, please

provide the manual number given at the end of this manual.

2

CONTENTS
SAFETY PRECAUTIONS .1

INTRODUCTION. .1

RELEVANT MANUALS .4

TERMS .5

CHAPTER 1 OUTLINE 7

CHAPTER 2 PROGRAM CONFIGURATION 9

2.1 Program Block . 10

CHAPTER 3 PROGRAM ORGANIZATION UNIT (POU) 11

3.1 Function (FUN). 12

3.2 Function Block (FB) . 16

CHAPTER 4 LABELS 22

4.1 Type . 22

4.2 Class. 23

4.3 Data Type . 23

4.4 Arrays . 26

4.5 Structures. 28

4.6 Constant . 30

4.7 Precautions . 31

CHAPTER 5 LADDER DIAGRAM 33

5.1 Configuration . 33

Ladder symbols . 33

Program execution order . 34

5.2 Inline ST . 35

5.3 Statements and Notes . 36

CHAPTER 6 ST LANGUAGE 37

6.1 Configuration . 38

Delimiter . 39

Operator . 39

Syntax . 40

Constant . 47

Label and device . 47

Comment . 48

CHAPTER 7 FBD/LD language 49

7.1 Configuration . 49

Program unit . 50

Worksheet . 54

Constant . 54

Labels and devices . 54

7.2 Program execution order . 55

The order of executions of program units . 55

3

C
O

N
T

E
N

T
S

INDEX 56

REVISIONS. .58

WARRANTY .59

TRADEMARKS .60

4

RELEVANT MANUALS

User's manuals for the applicable modules

Manual name <manual number> Description

MELSEC iQ-F FX5 User's Manual (Startup)

<JY997D58201>

Performance specifications, procedures before operation, and troubleshooting of the

CPU module.

MELSEC iQ-F FX5U User's Manual (Hardware)

<JY997D55301>

Describes the details of hardware of the FX5U CPU module, including input/output

specifications, wiring, installation, and maintenance.

MELSEC iQ-F FX5UC User's Manual (Hardware)

<JY997D61401>

Describes the details of hardware of the FX5UC CPU module, including input/output

specifications, wiring, installation, and maintenance.

MELSEC iQ-F FX5 User's Manual (Application)

<JY997D55401>

Describes basic knowledge required for program design, functions of the CPU

module, devices/labels, and parameters.

MELSEC iQ-F FX5 Programming Manual (Program Design)

<JY997D55701> (This manual)

Describes specifications of ladders, ST, FBD/LD, and other programs and labels.

MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks)

<JY997D55801>

Describes specifications of instructions and functions that can be used in programs.

MELSEC iQ-F FX5 User's Manual (Serial Communication)

<JY997D55901>

Describes N:N network, MELSEC Communication protocol, inverter communication,

non-protocol communication, and predefined protocol support.

MELSEC iQ-F FX5 User's Manual (MODBUS Communication)

<JY997D56101>

Describes MODBUS serial communication.

MELSEC iQ-F FX5 User's Manual (Ethernet Communication)

<JY997D56201>

Describes the functions of the built-in Ethernet port communication function.

MELSEC iQ-F FX5 User's Manual (SLMP)

<JY997D56001>

Explains methods for the device that is communicating with the CPU module by

SLMP to read and write the data of the CPU module.

MELSEC iQ-F FX5 User's Manual (Positioning Control)

<JY997D56301>

Describes the built-in positioning function.

MELSEC iQ-F FX5 User's Manual (Analog Control)

<JY997D60501>

Describes the analog function.

GX Works3 Operating Manual

<SH-081215ENG>

System configuration, parameter settings, and online operations of GX Works3.

5

TERMS
Unless otherwise specified, this manual uses the following terms.

 � indicates a variable part to collectively call multiple models or versions.

(Example) FX5U-32MR/ES, FX5U-32MT/ES FX5U-32M/ES

 � For details on the FX3 devices that can be connected with the FX5, refer to FX5 User’s Manual (Hardware).

Terms Description

■Devices

FX5 Abbreviation of FX5 PLCs

FX3 Generic term for FX3S, FX3G, FX3GC, FX3U, and FX3UC PLCs

FX5 CPU module Generic term for FX5U CPU module and FX5UC CPU module

FX5U CPU module Generic term for FX5U-32MR/ES, FX5U-32MT/ES, FX5U-32MT/ESS, FX5U-64MR/ES, FX5U-64MT/ES,

FX5U-64MT/ESS, FX5U-80MR/ES, FX5U-80MT/ES, and FX5U-80MT/ESS

FX5UC CPU module Generic term for FX5UC-32MT/D and FX5UC-32MT/DSS

Extension module Generic term for FX5 extension modules and FX3 function modules

� FX5 extension module Generic term for I/O modules, FX5 extension power supply module, and FX5 intelligent function module

� FX3 extension module Generic term for FX3 extension power supply module and FX3 special function blocks

Extension module (extension cable type) Input modules (extension cable type), Output modules (extension cable type), Bus conversion module

(extension cable type), and Intelligent function modules

Extension module (extension connector type) Input modules (extension connector type), Output modules (extension connector type), Input/output

modules, Bus conversion module (extension connector type), and Connector conversion module (extension

connector type)

I/O module Generic term for input modules, output modules, Input/output modules, and powered input/output modules

Input module Generic term for Input modules (extension cable type) and Input modules (extension connector type)

� Input module (extension cable type) Generic term for FX5-8EX/ES and FX5-16EX/ES

� Input module (extension connector type) Generic term for FX5-C32EX/D and FX5-C32EX/DS

Output module Generic term for output modules (extension cable type) and output modules (extension connector type)

� Output module (extension cable type) Generic term for FX5-8EYR/ES, FX5-8EYT/ES, FX5-8EYT/ESS, FX5-16EYR/ES, FX5-16EYT/ES, and

FX5-16EYT/ESS

� Output module (extension connector type) Generic term for FX5-C32EYT/D and FX5-C32EYT/DSS

Input/output modules Generic term for FX5-C32ET/D and FX5-C32ET/DSS

Powered input/output module Generic term for FX5-32ER/ES, FX5-32ET/ES, and FX5-32ET/ESS

Extension power supply module Generic term for FX5 extension power supply module and FX3 extension power supply module

� FX5 extension power supply module Different name for FX5-1PSU-5V

� FX3 extension power supply module Different name for FX3U-1PSU-5V

Intelligent module The abbreviation for intelligent function modules

Intelligent function module Generic term for FX5 intelligent function modules and FX3 intelligent function modules

� FX5 intelligent function module Generic term for FX5 intelligent function modules

� FX3 intelligent function module Generic term for FX3 special function blocks

Simple motion module Different name for FX5-40SSC-S

Expansion board Generic term for board for FX5U CPU module

� Communication board Generic term for FX5-232-BD, FX5-485-BD, and FX5-422-BD-GOT

Expansion adapter Generic term for adapter for FX5 CPU module

� Communication adapter Generic term for FX5-232ADP and FX5-485ADP

� Analog adapter Generic term for FX5-4AD-ADP and FX5-4DA-ADP

Bus conversion module Generic term for Bus conversion module (extension cable type) and Bus conversion module (extension

connector type)

� Bus conversion module (extension cable

type)

Different name for FX5-CNV-BUS

� Bus conversion module (extension connector

type)

Different name for FX5-CNV-BUSC

Battery Different name for FX3U-32BL

Peripheral device Generic term for engineering tools and GOTs

GOT Generic term for Mitsubishi Graphic Operation Terminal GOT1000 and GOT2000 series

6

■Software packages

Engineering tool The product name of the software package for the MELSEC programmable controllers

GX Works3 The product name of the software package, SWnDND-GXW3, for the MELSEC programmable controllers

(The 'n' represents a version.)

■Manuals

User's manual Generic term for separate manuals

� User's manual (Startup) Abbreviation of MELSEC iQ-F FX5 User's Manual (Startup)

� FX5 User's manual (Hardware) Generic term for MELSEC iQ-F FX5U User's Manual (Hardware) and MELSEC iQ-F FX5UC User's Manual

(Hardware)

� FX5U User's manual (Hardware) Abbreviation of MELSEC iQ-F FX5U User's Manual (Hardware)

� FX5UC User's manual (Hardware) Abbreviation of MELSEC iQ-F FX5UC User's Manual (Hardware)

� User's manual (Application) Abbreviation of MELSEC iQ-F FX5 User's Manual (Application)

Programming manual (Program Design) Abbreviation of MELSEC iQ-F FX5 Programming Manual (Program Design)

Programming manual (Instructions, Standard

Functions/Function Blocks)

Abbreviation of MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/Function Blocks)

Communication manual Generic term for MELSEC iQ-F FX5 User's Manual (Serial Communication), MELSEC iQ-F FX5 User's

Manual (MODBUS Communication), MELSEC iQ-F FX5 User's Manual (Ethernet Communication), and

MELSEC iQ-F FX5 User's Manual (SLMP)

� Serial communication manual Abbreviation of MELSEC iQ-F FX5 User's Manual (Serial Communication)

� MODBUS communication manual Abbreviation of MELSEC iQ-F FX5 User's Manual (MODBUS Communication)

� Ethernet communication manual Abbreviation of MELSEC iQ-F FX5 User's Manual (Ethernet Communication)

� SLMP manual Abbreviation of MELSEC iQ-F FX5 User's Manual (SLMP)

Positioning manual Abbreviation of MELSEC iQ-F FX5 User's Manual (Positioning Control)

Analog manual Abbreviation of MELSEC iQ-F FX5 User's Manual (Analog Control)

■Program

Operand A generic term for items, such as source data (s), destination data (d), number of devices (n), and others,

used to configure instructions and functions

Device A device (X, Y, M, D, or others) in a CPU module

Buffer memory A memory in an intelligent function module, where data (such as setting values and monitoring values) are

stored.

POU Defined unit of a program. Use of POUs enables a program to be divided into units according to process or

function, and each unit to be programmed individually.

Terms Description

1 OUTLINE

 7

1
1 OUTLINE

This manual describes program configurations, content, and method for creating programs.

For how to create, edit, or monitor programs using the engineering tool, refer to the following.

GX Works3 Operating Manual

Type of programming languages

With the FX5 series, the optimal programming language can be selected according to the application.

■Ladder diagram

When using ladder diagram, refer to the following.

Page 33 LADDER DIAGRAM

■ST language

When using ST language, refer to the following.

Page 37 ST LANGUAGE

■FBD/LD language

When using FBD/LD language, refer to the following.

Page 49 FBD/LD language

Programming language Description

Ladder diagram Ladder diagram is a graphic language that indicates circuits using contacts, coils, and others.

The ladder diagram describes logic circuits with symbolized contacts and coils for easy-to-understand

sequence control.

Structured text language (ST language) ST language is a text language that describes programs with IF statements, operators, and others.

Because operation processing that is difficult to describe in ladder diagram can be easily and briefly

described with ST language, ST language is suitable for applications requiring complicated arithmetic

operation or comparative operation. With ST language, programs can be easily described with syntax

using selective branches with conditional statements and repetition by repetitive statements in the

same way as C language.

Function block diagram/ladder diagram

(FBD/LD language)

This is a graphic language that describes a program by wiring blocks for specific processing (function

elements, FB elements), variable elements, and constant elements along with the flows of data and

signals.

You can easily create a program that may be complicated to create by using a ladder program. So you

can enhance the productivity of programs.

8
1 OUTLINE

 � Ladder diagram and FBD/LD language are for customers who have knowledge or experience of sequence

control and logic circuits.

 � ST language is for customers who have knowledge or experience of the C language programming.

 � By using labels in a program, the readability of the program is improved, and activating a program for the

system with a different module configuration is easy.

2 PROGRAM CONFIGURATION

 9

2

2 PROGRAM CONFIGURATION

Using the engineering tool, multiple programs and POUs (Program Organization Units) can be created.

Thus, programs and POUs can be sorted by processing.

This chapter describes the program configuration.

For the POU, refer to the following.

Page 11 PROGRAM ORGANIZATION UNIT (POU)

Project

A project is a collection of data (including programs and parameters) to be executed by the CPU module.

Only one project can be written to one CPU module.

For one project, one or more program files need to be created.

Program file

A program file is a collection of programs and POUs.

One program file consists of one or more program blocks.

The operation on the program file level can be changed, such as, the execution type of a program can be switched from scan

execution type to standby type, or whether to write data to the CPU module.

Project

Program file 1

Program block Program block

Function block

Function block

Function

Function

Function

Program block

Program file 2 POUs

10
2 PROGRAM CONFIGURATION

2.1 Program Block

2.1 Program Block

A program block is a unit of a program.

Multiple program blocks can be created in one program file, and are executed in the registered order.

By dividing program blocks by functions or processing, changing the program order or replacing the program becomes easy.

Program blocks are stored in program files of each program in the registration destination.

Creating main routine programs, subroutine programs, and interrupt programs for each program block makes the program

easy to read.

For details on the main routine program, subroutine program, and interrupt program, refer to the following.

User's manual (Application)

 � Create subroutine programs and interrupt programs after the FEND instruction. The program area after the FEND

instruction is not executed as the main routine program. For example, when the FEND instruction is used at the end of the

second program block, the third program block and later are handled as subroutine programs or interrupt programs.

 � To make the program easy to read, use twin instructions, such as FOR and NEXT instructions and MC and MCR

instructions, in the same program block.

 � A simple program can be executed by the CPU module with just a main routine program in one program block.

Type Description

Main routine program Program segment from the step 0 to the FEND instruction

Subroutine program Program segment from a pointer (P) to the RET instruction

Executed only when a subroutine call instruction (CALL instruction etc.) is executed.

Interrupt program Program segment from an interrupt pointer (I) to the IRET instruction

When an interrupt is triggered, the interrupt program corresponding to the interrupt pointer number is executed.

Program file
Program block 1

Program block 2

3 PROGRAM ORGANIZATION UNIT (POU)

 11

3

3 PROGRAM ORGANIZATION UNIT (POU)

The POU includes the following types.

 � Function

 � Function block

The processing of each POU can be described in a programming language according to the control. POUs are called from a

program block, and then executed.

A structured program is a program created by components. Processes in lower levels of hierarchical program

are divided to several components according to their processing information and functions.

Each component is designed to have a high degree of independence for easy addition and replacement.

The following shows examples of the process that would be ideal to be structured.

 � A process that is used repeatedly in a program

 � A process that can be divided into functions

This chapter describes two types of POUs using labels.

Devices can also be used in the program of a function or function block. For details on devices, refer to the following.

User's manual (Application)

Project

Program file

POU folder

POU

Program block

POU
Function block

POU
Function

Use

12
3 PROGRAM ORGANIZATION UNIT (POU)

3.1 Function (FUN)

3.1 Function (FUN)

Functions are a type of POU used by program blocks, function blocks, or other functions.

The function sends back a value to the call source after execution. The value is called return values.

The function always outputs the same return value as the processing result in response to the same input.

The function can be re-used effectively by defining a simple, independent, and frequently used algorithm.

Input variable and output variable

For a function, input variables and output variables can be defined. Output variable can be created to output data separate

from the return value.

For classes for which input variables or output variables can be set, refer to the following.

Page 23 Class

Variables defined in a function are overwritten every time the function is called.

To retain the variable values at each call, use a function block or design a program so that an output variable

is saved in a different variable.

Case of ladder diagram Case of FBD/LD language

(1) Function name

(2) Input variables

(3) Output variables

FUN

FB or FUNFUN

Function

Function block
or function

Program block

Program block

(1)

(2)

(3)

(1)

(2)

(3)

3 PROGRAM ORGANIZATION UNIT (POU)

3.1 Function (FUN) 13

3

EN/ENO

An EN (enable input) and ENO (enable output) can be appended to a function to control its execution.

 � A Boolean variable used as an executing condition of a function is set to an EN.

 � A function with an EN is executed only when the executing condition of the EN is TRUE.

 � A Boolean variable used as an output of function execution result is set to an ENO.

For the Boolean variable, refer to the following.

Page 23 Data Type

The table below shows the "ENO" status corresponding to the "EN" status and the operation result.

 � Setting an output label to an ENO is not required.

 � When an EN or ENO is used for standard functions, functions with an EN are shown as "Function name_E".

Creating programs

The program of a function can be created by using the engineering tool.

Navigation window "FB/FUN" Right-click "Add New Data"

The created program is stored in the FB/FUN file.

[CPU Parameter] "Program Setting" "FB/FUN File Setting"

Up to 64 programs can be stored in one FB/FUN file.

For details on program creation, refer to the following.

■Applicable devices and labels
The following table lists the devices and labels that can be used in function programs.

: Applicable, : Applicable only by instructions (Not applicable as a label indicating a program step), : Not applicable

*1 The timer, retentive timer, counter and long counter types cannot be used.

EN ENO Operation result

TRUE (Executes operation) TRUE Operation output value

FALSE (Stops operation) FALSE Indefinite value

Item Reference

How to create function programs GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module User's manual (Startup)

Type of device/label Availability

Label (other than pointer type) Global label

Local label *1

Label (pointer type) Pointer type global label

Pointer type local label

Device Global device

Pointer Global pointer

14
3 PROGRAM ORGANIZATION UNIT (POU)

3.1 Function (FUN)

Operation overview

The program of a function is stored in the FB/FUN file and called by the calling source program when executed

You can nest all function blocks and functions up to 32 times.

Labels defined by a function

The labels defined by a function are assigned in the temporary areas of the storage-target memory during execution of the

function, and the areas are freed after the processing completes.

The following figure shows the label assignments while the above functions are being executed.

For the types of labels that can be defined by a function, refer to the following.

Page 23 Class

The label to be defined by a function must be initialized by a program before the first access because the label

value will be undefined.

Number of steps

To call a function, the number of steps required is not only for the program itself but also for the processing that passes the

argument and return value, the processing that calls the program, and additional steps used by the system.

■Program
The number of steps required for a function program is the total number of instruction steps plus at least additional 13 steps

used by the system. For the number of steps required for each instruction, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blocks)

FUN1

(Program file)
Main program

(FB file)
FUN1 program (FB file)

FUN3 program

(FB file)
FUN2 program

FUN3

FUN2

Execution flow

1 2
3

45

7

6

Main program being

executed

Main program being

executed

Main program being

executed

FUN1 being executed

(before FUN3 is called)
FUN1 being executed

(after FUN3 is executed)

FUN3 being executed

FUN2 being executed

Label area of FUN1

Label area of FUN2

Label area of FUN1 Label area of FUN1

Label area of FUN3

1 2 3 4

5 6 7

3 PROGRAM ORGANIZATION UNIT (POU)

3.1 Function (FUN) 15

3

■Calling source
When calling a function, the calling source generates the processing that passes the argument and return value before and

after the call processing.

Passing the argument

The instruction used to pass the argument differs depending on the class and data type of the argument. The following table

summarizes the instructions that can be used to pass the argument.

Calling the program

At least 16 steps are required to call the program of a function.

Passing the return value

The instruction and the number of steps used for passing the return value are identical to those for passing the argument.

EN/ENO

The following table lists the number of steps required for EN/ENO.

Precautions

■Global pointer/local pointer/pointer type global labels
Global pointer, local pointer, and pointer type global labels cannot be used as labels indicating program steps in the function

program.

(1) Passing the argument

(2) Calling the FUN1 program

(3) Passing the return value

Argument class Data type Instruction used Number of steps

VAR_INPUT Bit LD+OUT

LD+MOVB

(Which of the above instructions is used is

determined by the combination of the

programming language, type of function, and

type of input argument.)

For the number of steps required for

each instruction, refer to the

following.

Programming manual

(Instructions, Standard Functions/

Function Blocks)

Word [Unsigned]/Bit String [16-bit]

Double Word [Unsigned]/Bit String [32-bit]

Word [Signed]

Double Word [Signed]

LD+MOV

LD+DMOV

FLOAT [Single Precision] LD+EMOV

Time LD+DMOV

String(32) LD+$MOV

Array, Structure LD+BMOV

Argument class Data type Instruction used Number of steps

VAR_OUTPUT Same as for passing the argument Same as for passing the argument Same as for passing the argument

Item Number of steps

EN 6

ENO 4

FUN1M0
M0

MOV D0 XX
(1)

(2)

(3)

Calling the function

FUNCall FUN1

Y20

…

Y20

D0

FUN2M10 Y40

D10

Program block 1
(displayed) Program file

FB file

FUN1 program

The call-target program
is replaced with the call
instruction.

16
3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB)

3.2 Function Block (FB)

Function blocks are a type of POU used by program blocks or other function blocks.

Unlike the function, the function block does not output return values.

The function block can save a value in a variable, and thus the input status and processing result are retained.

Because the retained value is used for the next processing, the same result is not always output even with the same input

value.

To use the function block in a program, instances must be defined.

Page 17 Instances

Input variable, output variable, and input/output variable

Input variables, output variables, and input/output variables must be defined for function blocks.

The function block can output multiple operation results and can also be created without any output.

For classes for which input variables, output variables, or input/output variables can be set, refer to the following.

Page 23 Class

Case of ladder diagram Case of FBD/LD language

(1) Instance name

(2) Function block name

(3) Output variables

(4) Input variables

(1) Multiple outputs are returned.

(2) No outputs are returned.

FB

FBFB

Function blockFunction block

Function block Function block

(2)

(1)

(4)

(3)

(2)

(1)

(4)

(3)

_S1 Q1

RESET

IN_Bool

iTim

lCnt

CD Q

CVLOAD

PV

InstanceInstance

Instance

SR SAMPLE_FB1

CTD

(1)

(2)

3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB) 17

3

Internal variable

For the function block, internal variables can be used.

For classes for which internal variables can be set, refer to the following.

Page 23 Class

External variable

For the function block, external variables can be used.

For classes for which external variables can be set, refer to the following.

Page 23 Class

Instances

■Instances
To use the function block, instances must be created.

By creating instances of the function block, the function block can be used by calling from a program or another function

block. Multiple instances can be created from one function block definition.

To create an instance, define it as a global label or local label of the POU that uses the function block. The instance can be

defined as an array.

The same function block can be used in different instances in one POU. For each instance of a function block, labels are

assigned to different areas in memory. Even though the same label names are used, different states are held for each

instance.

Ex.

The above function block starts counting current value when the input variables (Count contact) turn on and turns on the

output variable (Output contact) when the current value held in the internal variable reaches the set value.

Instance A and B are the same function blocks, but instances A and B hold different states because the instance is different.

In the above example, output variable (Output contact) of instance B is already turned ON, but output variable (Output

contact) of instance A is not turned ON. Because the current value of instance A does not reach the set value, output variable

(Output contact) of instance A is not turn ON.

■Structure of instance
An instance consists of the following data areas.

■Capacity of instance
The capacity of each data area of an instance should be calculated as follows.

Local label area

Capacity of local label area of instance = Total capacity of data of non-latched local labels + Capacity of reserved area

Data area Description

Local label area Used to assign local labels of the function block.

Local latch label area Used to assign latched local labels of the function block.

Breakdown Description

Capacity of non-latched local labels Total capacity of the data areas used for local labels.

bLabel3

bLabel1

uLabel2

bLabel6

bLabel4

uLabel5

Instance A

Function block

Count contact

Set value

Output contact

Current value

Count contact

Set value

Output contact

Current value

Instance B

uLabel13 ON

uLabel12 500

uLabel10 ON

uLabel11 500

uLabel12 10

uLabel10 ON

uLabel11 7

uLabel13 OFF

18
3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB)

Local latch label area

Capacity of local latch label area of instance = Total capacity of data of latched local labels + Capacity of reserved area

The local label area capacity is assigned by using the engineering tool. For details, refer to the following.

GX Works3 Operating Manual

EN/ENO

An EN (enable input) and ENO (enable output) can be appended to a function block, in the same way as a function, to control

its execution.

Page 13 EN/ENO

An actual argument must be assigned to EN when the instance of the function block to which an EN/ENO is added is called.

Creating programs

The program of a function block can be created by using the engineering tool.

Navigation window "FB/FUN" Right-click "Add New Data"

The created program is stored in the FB/FUN file.

[CPU Parameter] "Program Setting" "FB/FUN File Setting"

Up to 64 programs can be stored in one FB/FUN file.

For details on program creation, refer to the following.

■Type of programs
There are two types of function blocks and the program of each function block type is stored in different ways.

 � Macro type function block

 � Subroutine type function block

For details, refer to the following.

Page 19 Operation overview

The above cannot be selected for module function blocks, standard functions, and standard function blocks.

■Applicable devices and labels
The following table lists the devices and labels that can be used by function block programs.

: Applicable, : Applicable only by instructions (Not applicable as a label indicating a program step)

Capacity of reserved area The capacity of the area reserved to add non-latched local labels and local

instances when executing the online program change function. (fixed at 48

words)

Breakdown Description

Capacity of latched local labels Total capacity of the data areas used for latched local labels.

Capacity of reserved area The capacity of the area reserved to add latched local labels and local

instances when executing the online program change function. (fixed at 16

words)

Item Reference

How to create function programs GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module User's manual (Startup)

Type of device/label Availability

Label (other than pointer type) Global label

Local label

Label (pointer type) Pointer-type global label

Pointer-type local label

Device Global device

Pointer Global pointer

Breakdown Description

3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB) 19

3

Operation overview

■Macro type function blocks
The program of a macro type function block is loaded by the calling source program according to the execution flow. At the

time of program execution, the loaded program is executed in the same way as the main program.

Use a macro type function block when giving higher priority to the processing speed of the program.

■Subroutine type function blocks
The program of a subroutine type function block is stored in the FB/FUN file and called by the calling source program when

executed.

Use a subroutine type function block to reduce the program size.

You can nest all of function blocks, and functions up to 32 times.

Macro type function blocks

■Calling source
When calling a macro type function block, the calling source loads the call-target program during compilation.

(1) The FB1 program is loaded into the

main program and executed.

(2) FB3 is loaded into the FB1 program.

(3) The FB2 program is loaded into the

main program and executed in the

same way as the FB1 program.

(1) The program is loaded in two or more call

locations.

FB1

FB1_a

FB2

FB2_a

(Program file)
Main program

FB1 program (1)

FB2 program

Actual structure of
main program

(2)

(3)

FB3 program

Execution flow

FB1

FB1_a

FB3

FB3_a

FB2_a

FB2

(Program file)
Main program

Execution flow
(FB file)

FB1 program (FB file)
FB3 program

(FB file)
FB2 program

Program block 1 (displayed) Program file

FB1_a

FB1

FB1_b

(1)

FB1

FB1 program
(FB1_a)

FB1 program
(FB1_b)

20
3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB)

■Program
The number of steps required for a function block program is the total number of instruction steps, like normal programs.

For the number of steps required for each instruction, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blockls)

Subroutine type function blocks

■Calling source
When calling a subroutine type function block, the calling source generates the processing that passes the argument and

return value before and after the call processing.

Passing the argument

The instruction used to pass the argument differs depending on the class and data type of the argument. The following table

summarizes the instructions that can be used to pass the argument.

Calling the program

A total of 12 steps are required to call the function block program.

Passing the return value

The instruction used to pass the return value differs depending on the class and data type of the argument. The following table

summarizes the instructions that can be used to pass the return value.

(1) Passing the argument

(2) Calling the FB1 program

(3) Passing the return value

Argument class Data type Instruction used Number of steps

VAR_INPUT

VAR_IN_OUT

Bit LD+OUT

LD+MOVB

(Which of the above instructions to use is

determined by the combination of the

programming language, type of function, and

type of input argument.)

For the number of steps required for

each instruction, refer to the

following.

Programming manual

(Instructions, Standard Functions/

Function Blocks)

Word [Unsigned]/Bit String [16-bit]

Double Word [Unsigned]/Bit String [32-bit]

Word [Signed]

Double Word [Signed]

LD+MOV

LD+DMOV

FLOAT [Single Precision] LD+EMOV

Time LD+DMOV

String(32) LD+$MOV

Array, Structure LD+BMOV

Argument class Data type Instruction used Number of steps

VAR_OUTPUT

VAR_IN_OUT

Same as for passing the argument. Same as for passing the argument. Same as for passing the argument.

FB1

FB1_a

FB1

FB1_b

M0
M0

MOV D0 XX
(1)

(2)

(3)

FBCall FB1_a

Y20

…

Y20

D0

M10 Y40

D10

Program block 1
(displayed) Program file

FB file

FB1 program

The call-target program
is replaced with the call
instruction. Calling the

function block

3 PROGRAM ORGANIZATION UNIT (POU)

3.2 Function Block (FB) 21

3

EN/ENO

The following table lists the number of steps required for EN/ENO.

The number of steps may increase or decrease, depending on the following conditions.

 � The actual argument or return value of the function block are index-modified.

 � The address specifying the device exceeds 16 bits in length.

 � Nibble specification is performed.

■Program
The number of steps required for a function block program is the total number of instruction steps, like normal programs.

For the number of steps required for each instruction, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blocks)

Precautions

■Global pointer/pointer type global labels
Global pointer and pointer type global labels cannot be used as labels indicating program steps in the function block program.

■When an index register is used
When an index register is used in the function block program, ladder programs for saving and returning the index register

values are required to protect the values.

Setting the index register data to 0 after saving can prevent an error that could be caused by an index modification validity

check. (Whether the device number exceeds the device range or not is checked.)

A program that saves the values in the index registers Z1 and Z2 before the program execution and returns the saved values

after the program execution

Item Number of steps

EN 6

ENO 4

Ex.

SM400

Z1MOV index_reg_tmp1

Z2MOV index_reg_tmp2

K0MOV Z1

K0MOV Z2

SM400

Z1MOV index_reg_tmp1

Z2MOV index_reg_tmp2

Before the program execution,
save the index register values in
index_reg_tmp.

Set 0 to the index register areas.

After the program execution, return the
values saved in index_reg_tmp to the
index register.

Program execution

Save the index register values.

Clear the index register values.

Return the register values.

22
4 LABELS

4.1 Type

4 LABELS

Labels are variables for I/O data or internal processing, specified by a character string.

Users can create a program without considering devices or buffer memory size by using labels.

Thus, a program, where labels are used, can be reused in a system with a different module configuration easily.

When labels are used, there are some precautions on programming and functions used. For details, refer to the following.

Page 31 Precautions

4.1 Type

This manual describes the following types of label.

 � Global labels

 � Local labels

Global labels

Global labels are labels that can be shared by programs in a project. Global labels can be used in all the programs in a

project.

Global labels can be used in program blocks and function blocks.

When setting a global label, set the label name, class and data type, and assign a device.

■Device assignment
Devices can be assigned to global labels.

Local labels

Local labels are labels that can be used in each POU only. Local labels that are not included in POUs cannot be used.

When setting a local label, set the label name, class, and data type.

There are other types of labels available in addition to global labels and local labels.

System labels

System labels can be shared among iQ Works-compatible products and are managed by MELSOFT

Navigator. Global labels registered as system labels can be monitored or accessed using the system labels on

GOT.

For details, refer to the following.

iQ Works Beginner's Manual

Module labels

Module labels are labels defined uniquely by each module. Module labels are automatically generated by the

engineering tool from the module used, and can be used as a global label.

For details, refer to the following.

MELSEC iQ-F FX5 CPU Module Function Block Reference

Item Description

Label to which no device is assigned � Programming without concern to devices is possible.

� Defined labels are allocated to the label area or latch label area in the device/label memory.

Label to which a device is assigned � If a device is to be programmed as a label referring to a device that is being used for input or output, the device can

be assigned directly.

� Defined labels are allocated to the device area in the device/label memory.

4 LABELS

4.2 Class 23

4

4.2 Class

The label class indicates how each label can be used from which POU.

The selectable class varies depending on the POU.

4.3 Data Type

Labels are classified into several data types according to the bit length, processing method, or value range.

The following two data types are provided.

 � Elementary data type

 � Generic data type (ANY)

Elementary data type

The following data types are available as the elementary data type.

Global label

Class Description Applicable POU

Program

block

Function

block

Function

VAR_GLOBAL Common label that can be used in program blocks and function blocks

VAR_GLOBAL_CONSTANT Common constant that can be used in program blocks and function blocks

VAR_GLOBAL_RETAIN Latch type label that can be used in program blocks and function blocks

Local label

Class Description Applicable POU

Program

block

Function

block

Function

VAR Label that can be used within the range of declared POUs

This label cannot be used in other POUs.

VAR_CONSTANT Constant that can be used within the range of declared POUs

This label cannot be used in other POUs.

VAR_RETAIN Latch type label that can be used within the range of declared POUs This label

cannot be used in other POUs.

VAR_INPUT Label that inputs to a function or a function block.

This label receives a value, and cannot be changed in POUs.

VAR_OUTPUT Label that outputs a value from a function or a function block

VAR_OUTPUT_RETAIN Latch type label that outputs a value from a function or a function block

VAR_IN_OUT Local label which receives a value, outputs it from a POU, and can be changed

in POUs

VAR_PUBLIC Label that can be accessed from other POUs

VAR_PUBLIC_RETAIN Latch type label that can be accessed from other POUs

Data type Description Value range Bit

length

Bit BOOL Represents binary status, such as ON or

OFF

0 (FALSE), 1 (TRUE) 1-bit

Word [Unsigned]/Bit String [16-bit] WORD Represents 16-bit 0 to 65535 16-bit

Double Word [Unsigned]/Bit String

[32-bit]

DWORD Represents 32-bit 0 to 4294967295 32-bit

Word [Signed] INT Handles positive and negative integer

values

-32768 to +32767 16-bit

Double Word [Signed] DINT Handles positive and negative double word

integer values

-2147483648 to +2147483647 32-bit

FLOAT [Single Precision] REAL Handles the portion after the decimal point

of the float (single precision)

Effective digits: 7 (after the decimal point:

6)

-2128 to -2-126, 0, 2-126 to 2128 32-bit

24
4 LABELS

4.3 Data Type

*1 The time data is used in the time data type function of standard functions. For the standard function, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blocks)

*2 When using a constant for a label of the time data, prefix "T#" to the label.

■Data types of timers and counters
The data types of a timer, retentive timer, counter, and long counter are structures that have contacts, coils, and current

values.

*1 The unit of the current value is specified by instruction name.

*2 When use a long counter in the OUT LC instruction: 0 to 4294967295

When use a long counter in the UDCNTF instruction: -2147483648 to +2147483647

For the operation of each device, refer to the following.

User's manual (Application)

The specification method of each member is the same as the member specification of the structure data type. (Page 28

Structures)

Time*1 TIME Handles values as d (day), h (hour), m

(minute), s (second), or ms (millisecond)

T#-24d20h31m23s648 ms to

T#24d20h31m23s647 ms*2

32-bit

String(32) STRING Handles a character string (character) Up to 255 letters (half-width

character)

Variable

Timer TIMER Structure that corresponds to a timer (T) of

a device

Page 24 Data types of timers and counters

Retentive Timer RETENTIVETIMER Structure that corresponds to a retentive

timer (ST) of a device

Counter COUNTER Structure that corresponds to a counter (C)

of a device

Long Counter LCOUNTER Structure that corresponds to a long

counter (LC) of a device

Pointer POINTER Type that corresponds to a pointer (P) of a device (User's manual (Application))

Data type Member

name

Data type of

member

Description Value range

Timer TIMER S Bit Indicates contacts. The operation is the same

as the contact of a timer device (TS).

0 (FALSE), 1

(TRUE)

C Bit Indicates coils. The operation is the same as the

coil of a timer device (TC).

0 (FALSE), 1

(TRUE)

N Word [unsigned]/Bit

String [16-bit]

Indicates a current value. The operation is the

same as the current value of a timer device

(TN).

0 to 32767*1

Retentive Timer RETENTIVETIMER S Bit Indicates contacts. The operation is the same

as the contact of a retentive timer device (STS).

0 (FALSE), 1

(TRUE)

C Bit Indicates coils. The operation is the same as the

coil of a retentive timer device (STC).

0 (FALSE), 1

(TRUE)

N Word [unsigned]/Bit

String [16-bit]

Indicates a current value. The operation is the

same as the current value of a retentive timer

device (STN).

0 to 32767*1

Counter COUNTER S Bit Indicates contacts. The operation is the same

as the contact of a counter device (CS).

0 (FALSE), 1

(TRUE)

C Bit Indicates coils. The operation is the same as the

coil of a counter device (CC).

0 (FALSE), 1

(TRUE)

N Word [unsigned]/Bit

String [16-bit]

Indicates a current value. The operation is the

same as the current value of a counter device

(CN).

0 to 32767

Long Counter LCOUNTER S Bit Indicates contacts. The operation is the same

as the contact of a long counter device (LCS).

0 (FALSE), 1

(TRUE)

C Bit Indicates coils. The operation is the same as the

coil of a long counter device (LCC).

0 (FALSE), 1

(TRUE)

N Double Word [unsigned]/

Bit string [32-bit]

Indicates a current value. The operation is the

same as the current value of a long counter

device (LCN).

*2

Data type Description Value range Bit

length

4 LABELS

4.3 Data Type 25

4

Generic data type (ANY)

The generic data type indicates data type of a label which combines several basic data types. The data type name begins with

"ANY".

The generic data type is used when multiple data types are available in arguments or return values etc. of a function of a

function block.

Labels defined as generic data types can be used for any sub-level data type.

For the types of generic data types and the primitive data types, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blocks)

Definable data types

The following tables list the definable data types possibilities for each label class.

*1 The pointer type cannot be defined.

*2 None of the timer, retentive timer, long timer, counter, long timer, long retentive timer, and long counter types can be defined.

Global label

Class Definable data type

VAR_GLOBAL Primitive data type, array, structure, function block

VAR_GLOBAL_CONSTANT Primitive data type*1

VAR_GLOBAL_RETAIN Primitive data type*1, array, structure

Local label (program block)

Class Definable data type

VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

Local label (function)

Class Definable data type

VAR Primitive data type*2, array, structure

VAR_CONSTANT Primitive data type*1

VAR_INPUT Primitive data type*1*2, array, structure

VAR_OUTPUT

Return value

Local label (function block)

Class Definable data type

VAR Primitive data type, array, structure, function block

VAR_CONSTANT Primitive data type*1

VAR_RETAIN Primitive data type*1, array, structure

VAR_INPUT

VAR_OUTPUT

VAR_OUTPUT_RETAIN

VAR_IN_OUT

VAR_PUBLIC

VAR_PUBLIC_RETAIN

26
4 LABELS

4.4 Arrays

4.4 Arrays

An array represents a consecutive accumulation of the same data type labels, under the same name.

Arrays can be defined by the elementary data types or structures or function blocks.

The maximum number of arrays differs depending on the data types.

Definition of arrays

■Array elements
When an array is defined, the number of elements, or the length of array, must be determined. For the range of the number of

elements, refer to the following.

Page 27 Maximum number of array elements

■Definition format
The following table lists definition format examples up to three dimensions.

The range from the array start value to the array end value is the number of elements.

How to use arrays

To identify individual labels of an array, append an index enclosed by "[]" after the label name.

For an array with two or more dimensions, delimit indexes in "[]" by using "comma (,)".

One-dimensional array Two-dimensional array

Number of array

dimensions

Format Remarks

One dimension Array of elementary data type/structure name (array start value .. array end value) � For elementary data types:

Page 23 Elementary data type

� For structured data types:

Page 28 Structures

(Definition example) Bit (0..2)

Two dimensions Array of elementary data type/structure name (array start value .. array end value, array start

value .. array end value)

(Definition example) Bit (0..2, 0..1)

Three dimensions Array of elementary data type/structure name (array start value .. array end value, array start

value .. array end value, array start value .. array end value)

(Definition example) Bit (0..2, 0..1, 0..3)

Type Specification example Remarks

Constant bLabel1[0] An integer equal to or greater than 0 can be specified. Decimal constant or hexadecimal constant can

be specified.

Device bLabel1[D0] A word device or double-word device can be specified.

Label bLabel1[uLabel2] The following data types can be specified.

� Word [unsigned]/bit string [16 bits]

� Double word [unsigned]/bit string [32 bits]

� Word [signed]

� Double word [signed]

Expression bLabel1[5+4] Expressions can be specified only in ST language.

bLabel1 [0]

[n]

[1]

Label name Indexes

…

bLabel2
[0,0] [0,1] [0,n]

[1,0] [1,1]

[m,0] [m,n]

… …

…

…

……

……

…
Label name Indexes

bLabel1 [0] bLabel2 [0,3]

Label name Indexes

4 LABELS

4.4 Arrays 27

4

 � The data storage location becomes dynamic by specifying a label for the array index. This enables arrays to

be used in a program that executes loop processing.The following is a program example that consecutively

stores "1234" in the "uLabel4" array.

 � In the case of the ladder diagram, arrays can be used with element numbers omitted. When the element

number is omitted, it is converted to the starting number of the array element. For example, when the label

name you define is "boolAry" and the data type is "bit (0..2,0..2)", then "boolAry[0,0]" and "boolAry" are

treated in the same way.

 � A multidimensional array can be specified as setting data of an instruction, function, or function block using

arrays. In that case, the rightmost element in the multidimensional array is treated as the first dimension.

Maximum number of array elements

The maximum number of array elements differs depending on data types.

Precautions

■When an interrupt program is used
When a label or device is specified for the array index, the operation is performed with a combination of multiple instructions.

For this reason, if an interrupt occurs during operation of the label defined as an array, data inconsistency may occur

producing an unintended operation result.

To prevent data inconsistency, create a program using the DI/EI instructions that disables/enables interrupt programs as

shown below.

For the DI/EI instructions, refer to the following.

Programming manual (Instructions, Standard Functions/Function Blocks)

Data type Setting range

Bit

Word [Unsigned]/Bit String [16-bit]

Double Word [Unsigned]/Bit String [32-bit]

Word [Signed]

Double Word [Signed]

FLOAT [Single Precision]

Time

Timer

Retentive Timer

Counter

Long Counter

Function Block

1 to 32768

String(32) 1 to 32768 character string length

bLabel1

bLabel2

uLabel4[wLabel3]K1234MOV

wLabel3INC

Program using the label defined as an array

DI

EI

28
4 LABELS

4.5 Structures

■Array elements
When accessing the element defined in an array, access it within the range of the number of elements.

If a constant out of the range defined for the array index is specified, a compile error will occur.

If the array index is specified with data other than a constant, a compile error will not occur. The processing will be performed

by accessing another label area or latch label area.

4.5 Structures

A structure is a data type that includes different labels. Structures can be used in all POUs.

Each member (label) included in a structure can be defined even when the data types are different.

Creating structures

To create a structure, first create the configuration of the structure, and define members for the created structure.

How to use structures

To use structures, register the label with the defined structure as a new data type.

To specify each member, append an element name after the structure label name with "period (.)" as a member name.

Ex.

When using the member of a structure

 � When labels are registered by defining multiple data types in a structure and used in a program, the order

the data is stored after converted is not the order the data types were defined. When programs are

converted using the engineering tool, labels are classified into type and data type, and then assigned to the

memory (memory assignment by packing blocks).

GX Works3 Operating Manual

 � If a member of a structure is specified in an instruction operand that uses control data (series of consecutive

devices from the operand used by the instruction), the control data is assigned to members of the structure

by the order they are stored in memory, not the order the members are defined.

Member (Label 1)

Member (Label 2)

Member (Label 3)

Member (Label 4)

Structure

stLabel1 . bLabel1

Structure label name

Member name

4 LABELS

4.5 Structures 29

4

Arrays of structures

Structures can also be used as arrays.

When a structure is declared as an array, append an index enclosed by "[]" after the structure label name.

The array of structure can be specified as arguments of functions and function blocks.

 When using an element of the structured array

Data types that can be specified

The following data types can be specified as a member of a structure.

 � Elementary data type

 � Pointer type

 � Arrays

 � Other structures

Structure types

The following data types are defined as a structure beforehand.

Type Reference

Timer type Page 23 Data Type

Retentive Timer type

Counter type

Long Counter type

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Structure label [1] Structure label [2] Structure label [3] Structure label [4]

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Member (Label 2)

Member (Label 1)

Member (Label 3)

Member (Label 4)

Ex.

stLabel [0] . bLabel1

Indexes

Member name

Structure label name

30
4 LABELS

4.6 Constant

4.6 Constant

Types of constants

The following table shows the expressions for setting a constant to a label.

*1 In the binary notation, the octal notation, the decimal notation, the hexadecimal notation, and the real number notation, values can be

delimited by an underscore (_) to make programs easy to read. (In the program processing, underscores are ignored.)

When "$" is used in character string type data

"$" is used as an escape sequence. Two hexadecimal numbers after "$" are recognized as an ASCII code, and characters

corresponding to the ASCII code are inserted in the character string. If no ASCII code for the two hexadecimal numbers after

"$" exists, a conversion error occurs. However, when any of the following characters is described after "$", no error occurs.

Applicable data type Type Expression Example

Bit Boolean data Input "TRUE" or "FALSE". TRUE, FALSE

Binary Append "2#" in front of a binary number. 2#0, 2#1

Octal Append "8#" in front of an octal number. 8#0, 8#1

Decimal Directly input a decimal number, or append "K" in front of a

decimal number.

0, 1, K0, K1

Hexadecimal Append "16#" or "H" in front of a hexadecimal number. 16#0, 16#1, H0, H1

� Word [Unsigned]/Bit String [16-bit]

� Double Word [Unsigned]/Bit String [32-

bit]

� Word [Signed]

� Double Word [Signed]

Binary*1 Append "2#" in front of a binary number. 2#0010, 2#01101010,

2#1111_1111

Octal*1 Append "8#" in front of an octal number. 8#0, 8#337, 8#1_1

Decimal*1 Directly input a decimal number or append "K" in front of a

decimal number.

123, K123, K-123,

12_3

Hexadecimal*1 Append "16#" in front of a hexadecimal number.

Or append "H" in front of a value.

16#FF, HFF, 16#1_1

FLOAT [Single Precision] Real number*1 Directly input a real number, or append "E" in front of a real

number.

2.34, E2.34, E-2.34,

3.14_15

Real number

(exponent

expression)

Append "E" in front of an exponent expression or a real number.

Append "+" in front of exponent part.

1.0E6, E1.001+5

String(32) Character string Enclose a character string with single quotations ('). 'ABC'

Time Time Append "T#" in front. T#1h,

T#1d2h3m4s5ms

Expression Symbol that is used in character string, or printer code

$$ $

$' '

$'' ''

$L or $l Line feed

$N or $n Newline

$P or $p Page (form feed)

$R or $r Return

$T or $t Tab

4 LABELS

4.7 Precautions 31

4

4.7 Precautions

Functions with limitations

In the following functions, there is a limitation on label use.

■Defining and using a global label with a device assigned
Define a global label following the procedure below, and use it when the functions having restriction on the use of labels are

executed.

Since the device area in the device/label memory is used, reserve device area capacity.

1. Reserve the device area to be used.

CPU Parameter Memory/Device Setting Device/Label Memory Area Capacity Setting

2. Define a label as a global label, and assign a device manually.

3. Use the label defined in step 2 for the functions having no restrictions on the use of labels. Use the device assigned to

the label for the function having restrictions on the use of labels.

■Copying the label data into a specified device
Copy the label data into a specified device following the procedure below, and use the copy-target device.

Since the device area in the device/label memory is used, reserve device area capacity.

1. Reserve the device area to be used.

CPU Parameter Memory/Device Setting Device/Label Memory Area Capacity Setting

2. Create a program using the label. The following is the program example for copying the data. (The data logging function

uses the data in udLabel1.)

3. Use the device where the data has been transferred in step 2 for the function having restrictions on the use of labels. (In

the program example in step 2, use D0.)

When copying a value of a label to another device by a transfer instruction, note that the number of program

steps increases. In addition, when adding a transfer instruction on a program, consider execution timing of the

function to be used.

Item Description

Trigger of an event execution type program Labels cannot be used. Consider taking the following measures.

� Use devices.

� Define a label to be used as a global label and assign devices to the global label.

Intelligent function module refresh setting Labels cannot be used. Consider taking the following measures.

� Use devices.

SM400

udLabel1 D0DMOV

32
4 LABELS

4.7 Precautions

Precautions for creating programs

When specifying a label as an operand used in instructions, match the data type of the label with that of the operand. In

addition, when specifying a label as an operand used in instructions that control continuous data, specify the data range used

in instructions within the data range of the label.

 SFT(P) instruction

 SFR(P) instruction

Specify a label which has a larger data range than the search range (n) points.

Limitations on label names

Label names have the following limitations:

 � A label name must start with a nonnumeric character or underscore (_). It cannot start with a number.

 � Reserved words cannot be used as label names.

For details of reserved words, refer to the following.

GX Works3 Operating Manual

Ex.

bLabel[0]SFT

bLabel[1]SFTP

SFTP

wLabel1.0

wLabel1.1

SFT

To shift the bits correctly, specify the array of a bit type label.

Specify the bit number of a word type label.

or

Ex.

wLabel1[0]

wLabel1[1]

wLabel1[n]

10

500

20

123

-123

123

Start device number of search range

Data matched

Search range :
(n) points

5 LADDER DIAGRAM

5.1 Configuration 33

5

5 LADDER DIAGRAM

Ladder diagram is a language that describes the sequence control by indicating logical operations consisting of "AND" or

"OR" with combinations of series connections and parallel connections in a ladder consisting of contacts and coils.

5.1 Configuration

With the ladder diagram, the following ladder can be created.

(1) A ladder consists of contacts and coils

(2) A ladder connected in series

(3) A ladder connected in parallel

(4) A ladder where instructions are used

(5) A ladder where standard functions and function blocks are used

Ladder symbols

This section shows ladder symbols that can be used for programming in the ladder diagram.

Element Symbol Description

NO contact Turns on when a specified device or label is ON.

NC contact Turns on when a specified device or label is OFF.

Rising edge Turns on at the rising edge (OFF to ON) of a specified device or label.

Falling edge Turns on at the falling edge (ON to OFF) of a specified device or label.

Negated rising edge Turns on when a specified device or label is OFF or ON, or at the falling edge (ON to OFF) of a

specified device or label.

Negated falling edge Turns on when a specified device or label is OFF or ON, or at the rising edge (OFF to ON) of a

specified device or label.

Conversion of operation result

to leading edge pulse

Turns on at the rising edge (OFF to ON) of an operation result. Turns off when the operation result

is other than the rising edge.

Conversion of operation result

to trailing edge pulse

Turns on at the falling edge (ON to OFF) of an operation result. Turns off when the operation result

is other than the falling edge.

Inverting the operation result Inverts the operation just before this instruction.

Coil Outputs an operation result to a specified device or a label.

Instruction Executes an instruction specified in [].

Turn-back Turns back a circuit by creating a turn source symbol and a turn destination symbol when the

number of contacts exceeds the number of contacts that can be created in one line.

(1)

(2)

(3)

(4)

(5)

34
5 LADDER DIAGRAM

5.1 Configuration

Program execution order

The program is executed in order of the following numbers.

When executing the program above, Y1 and Y2 turn on corresponding to turning ON or OFF of X1 to X4 as shown below.

Function Executes a function.

� How to create functions (GX Works3 Operating Manual)

� Standard function (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

Function block Executes a function block.

� How to create function blocks (GX Works3 Operating Manual)

� Standard function blocks (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

� Module function blocks (MELSEC iQ-F FX5 CPU Module Function Block Reference)

Element Symbol Description

X1 X3

X4

Y1

X2 Y2

1

2

3

5

4

6

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

ON

OFF

X1

X2

X3

X4

Y1

Y2

5 LADDER DIAGRAM

5.2 Inline ST 35

5

5.2 Inline ST

Inline ST is a function that creates, edits and monitors inline ST box that displays an ST program in a cell of an instruction that

is equivalent to a coil in the ladder editor.

Numerical operations or character string operations can be created easily in a ladder program.

 � Program with the inline ST

 � Program without the inline ST

Specifications

For the specifications of the inline ST, refer to the ST language specifications.

Page 37 ST LANGUAGE

Precautions

 � Only one inline ST can be created in one line of a ladder program.

 � Creating both a function block and an inline ST box in one line of a ladder program is impossible.

 � Creating an inline ST box in a position of an instruction that is equivalent to a contact creates an inline ST box in a position

of an instruction that is equivalent to a coil.

 � The maximum number of characters that can be input in an inline ST is 2048. (Line feed is counted as one character.)

 � In inline ST, do not use rising execution instructions, falling execution instructions, special timer instructions, or standard

function blocks (edge detection function blocks and counter function blocks) as they may not work property.

 � When the RETURN syntax is used in an inline ST, the processing inside the inline ST box ends, and the processing inside

the program block does not end.

X0

W0:=K0;1

W0:=(D0+D1+D2+D3+D4+D5+D6+D7+D8+D9+D10+D11)/K12;2

X0

K0MOV W0

D0+ W0

D1+ W0

D2+ W0

D3+ W0

D4+ W0

D5+ W0

D6+ W0

D7+ W0

D8+ W0

D9+ W0

D10+ W0

D11+ W0

K12W0 W0/

36
5 LADDER DIAGRAM

5.3 Statements and Notes

5.3 Statements and Notes

In a ladder program, statements and notes can be displayed.

Statements

By using statements, users can append comments to circuit blocks. Appending statements makes the processing flow easy to

understand.

Statements include line statements, P statements, and I statements.

A line statement can be displayed on a tree view of the Navigation window.

■Line statement
A comment is appended to a ladder block as a whole.

■P statement
A comment is appended to a pointer number.

■I statement
A comment is appended to an interrupt pointer number.

Notes

By using notes, users can append comments to coils and instructions in a program.

Appending notes makes the details of coils and application instructions easy to understand.

Types of statements and notes

"PLC" and "Peripheral" are the types of statements and notes.

Type Type Description

PLC � Line statement

� P statement

� I statement

� Note

Statements and notes can be stored on the CPU module.

PLC statement uses the following number of steps. (When all the characters are input in one-

byte characters. Decimal fraction is rounded up.)

� Without character: 3 steps

� With character: 4 + (Number of characters + 2 + 14) / 5 + Number of characters (steps)

Peripheral � Line statement

� P statement

� I statement

� Note

Statements and notes cannot be stored on the CPU module. (Only the position information can

be stored.)

Statements and notes must be saved on a peripheral device.

One statement or note line uses one step.

A * symbol is prefixed to the entered text automatically.

6 ST LANGUAGE

 37

6

6 ST LANGUAGE

The ST language is one of the languages supported by IEC 61131-3, the international standard that defines the description

methods for logic. ST language is a text programming language with a grammatical structure similar to C language. ST

language is suitable for programming some complicated processing that cannot be easily described using ladder diagram.

ST language supports control syntaxes, operational expressions, function blocks (FBs), and functions (FUNs). Therefore, the

following description can be made.

 Control syntaxes using selective branches with conditional statements and repetition by iteration statements

 Expressions using operators (such as *, /, +, -, <, >, and =)

 Calling a defined function block

 Calling a standard function

Ex.

(* Control conveyors of Line A to C. *)

CASE Line OF

1: Start_switch := TRUE; (* The conveyor starts. *)

2: Start_switch := FALSE; (* The conveyor stops. *)

3: Start_switch := TRUE; (* The conveyor stops with an alarm. *)

ELSE Alarm_lamp := TRUE;

END_CASE;

IF Start_switch = TRUE THEN (* The conveyor starts and performs processing 100 times. *)

FOR Count := 0

TO 100

BY 1 DO

Count_No := Count_No +1;

END_FOR;

END_IF;

Ex.

D0 := D1* D2 + D3 / D4 -D5;

IF D0 > D10 THEN

D0 := D10;

END_IF;

Ex.

//FB data name : LINE1_FB

//Input variable : I_Test

//Output variable : O_Test

//Input/output variable : IO_Test

//FB label name : FB1

FB1(I_Test :=D0,O_Test => D1,IO_Test := D100);

Ex.

(* Convert BOOL data type to INT/DINT data type. *)

wLabel2 := BOOL_TO_INT (bLabel1);

38
6 ST LANGUAGE

6.1 Configuration

6.1 Configuration

Operators and syntaxes are used for programing in ST language.

A statement must end with ";" (semicolon).

Spaces, tabs, and line feeds can be inserted anywhere between an operator and data.

Comments can be inserted in a program.

Constituent elements of a program

A ST program consists of the following elements.

 � Use one-byte delimiters, operators, and reserved words.

 � For details of reserved words, refer to the following.

GX Works3 Operating Manual

Item Example Reference

Delimiter ;, () Page 39 Delimiter

Operator +, -, <, >, = Page 39 Operator

Reserved word Syntax IF, CASE, WHILE, RETURN Page 40 Syntax

Device X0, Y10, M100 User's manual (Application)

Data type BOOL, DWORD Page 23 Data Type

Function ADD, REAL_TO_STRING_E Programming manual (Instructions, Standard

Functions/Function Blocks)

Constant 123, 'abc' Page 47 Constant

Label Switch_A Page 47 Label and device

Comment (* Turn ON *), //Turn ON, /*Turn ON*/ Page 48 Comment

Other symbols One-byte space, line feed code, tab code

intV2 := ABS(intV1);

IF M1 THEN

btn01 := TRUE;

ELSE

btn01 := FALSE;

END_IF;

Output_ENO := ENEG(btn01,Input1);

LadderFBInstance(Input1:=bool1,Input2:=bool2,Input3:=bool3);

(* user function block *)

Assignment statement

Conditional statement

Calling a function

Calling a function block

intV1 := 0 ;

intV2 := 2 ;
End of the statement

intV1 := 0 ;

intV2 :=

2 ;

Space

Tab

Line feed

intV1 := 0;

(* Substitution *)

intV2 := 2;

Comment

6 ST LANGUAGE

6.1 Configuration 39

6

Delimiter

The following delimiters are provided in ST language for clarifying the program structure.

Operator

The following shows the operators used in a ST program and the target data types and operation result data types for each

operator.

The following table shows the priorities of the operators.

 � If an expression includes multiple operators with the same priority, the operation is performed from the leftmost operator.

 � Up to 1024 operators can be used in one statement.

Symbol Description

() Parenthesized

[] Specification of an array element

. (period) Specification of members of the structure or function block

, (comma) Separation of arguments

: (colon) Device type specifier

; (semicolon) End of a sentence

' (single quotation mark) Description of a character string

.. (two periods) Specification of an integer range

Operator Target data type Operation result type

*, /, +, - ANY_NUM ANY_NUM

<, >,<=, >=, =, <> ANY_SIMPLE Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

** ANY_REAL (Base)

ANY_NUM (Exponent)

ANY_REAL

Operator Description Example Priority

() Parenthesized expression (2+3)*(4+5) 1

Function () Argument of a function CONCAR('AB','CD') 2

** Exponentiation 3.0**4 3

- Inversion of sign -10 4

NOT Bit type complement NOT TRUE

* Multiplication 10 * 20 5

/ Division 20 / 10

MOD Modulus operation 17 MOD 10

+ Addition 1.4 + 2.5 6

- Subtraction 3 - 2

<, >, <=, => Comparison 10 > 20 7

= Equality T#26h = T#1d2h 8

<> Inequality 8#15 <> 13

&, AND Logical AND TRUE AND FALSE 9

XOR Exclusive OR TRUE XOR FALSE 10

OR Logical OR TRUE OR FALSE 11

40
6 ST LANGUAGE

6.1 Configuration

Syntax

The following table shows the types of statements that can be used in a ST program.

Write statements using half width characters.

Assignment statement

When an array type label or a structure label is used, check the data types of the left side and right side of the assignment

statement.

When an array type label is used, the data type and the number of elements need to be the same for the left side and right

side. Do not specify elements.

 intAry1 := intAry2;

When a structure label is used, the data type needs to be the same for the left side and right side.

 dutVar1 := dutVar2;

■Automatic conversion of data types
In the ST language, if a different data type is assigned or a different arithmetic operation is described, the data type may be

automatically converted.

 Example of automatic conversion

Type conversion is performed in an assignment statement, input argument pass to a function block and function (VAR_INPUT

part), and an arithmetic operation.

Item Description Reference

Assignment statement Assignment statement Page 40 Assignment statement

Sub-program control statement Function block call statement, function call statement Page 41 Sub-program control statement

RETURN statement

Conditional statement IF statement (IF, IF...ELSE, IF...ELSIF) Page 42 Conditional statement

CASE statement

Iteration statement FOR statement Page 43 Iteration statement

WHILE statement

REPEAT statement

EXIT statement

Format Description Example

<Left side> := <Right side> ; The assignment statement assigns the result of the right side expression to the label or device of

the left side.

The result of the right side expression and the data type of the left side need to be the same data

type.

intV1 := 0;

intV2 := 2;

Ex.

Ex.

Ex.

dintLabel1 := intLabel1;

// Assignment statement : Automatically convert the INT type variable (intLabel1) to a DINT type variable,

and assign it the DINT type variable (dintLabel1).

dintLabel1 := dintLabel2 + intLabel1;

// Arithmetic operation expression : Automatically convert the INT type variable (intLabel1) to a DINT type

variable, and perform DINT type addition.

6 ST LANGUAGE

6.1 Configuration 41

6

To avoid the deletion of the data during type conversion, only conversion from smaller type to larger type is performed. Of the

elementary data types, type conversion is performed only for the following data types among basic data types are the targets

of a type conversion.

*1 When the data of 16 bits (a word [signed] or a word [unsigned]/bit string [16 bits]) is transferred to an input argument of the data type

ANY_REAL, an automatic conversion is made into a single- precision real.

*2 When the data of a word [unsigned]/bit string [16 bits] is transferred to an input argument of ANY32, an automatic conversion is made

into a double word [unsigned]/bit string [32 bits].

For data types that are not described above, use the type conversion function.

Since type conversion is not performed in the following cases, use the type conversion function.

 � Type conversion between integer-data types with different signs

 � Type conversion between the data types by which the data is deleted

For the precautions for assigning the result of an arithmetic operation, refer to the following.

Page 44 When an assigned arithmetic operation is used

Sub-program control statement

■Function block call statement

The following table shows the symbols used for arguments in a function block call statement and available formats.

The execution result of the function block is stored by assigning the output variable that is specified by adding "." (period) after

the instance name to the variable.

Data type Description

Word [Signed] In the case of a double word [signed] after conversion, the conversion is automatically made into a value

with a sign extension.

In the case of a single-precision real, an automatic conversion is made into the same value as the integer

before the conversion.*1

Word [Unsigned]/Bit String [16-bit] In the case of a double word [unsigned]/bit string [32 bits] or a double word [signed] after conversion, an

automatic conversion is made into to a value with a zero extension.*2

In the case of a single-precision real, an automatic conversion is made into the same value as the integer

before the conversion.*1

Format Description

Instance name(Input variable1:= Variable1, ... Output

variable1: => Variable2, ...);

Enclose the assignment statement that assigns variables to the input variable and output

variable by "()" after the instance name.

When using multiple variables, delimit the assignment statement by "," (comma).

Instance name.Input variable1:= Variable1;

:

Instance name();

Variable2:= Instance name.Output variable1;

List the assignment statement that assigns variables to the input variable and output variable

before and after a function block call statement.

Type Description Attribute Symbol Available formats

VAR_INPUT Input variable N/A, or RETAIN := All formats

VAR_OUTPUT Output variable N/A, or RETAIN => Variable only

VAR_IN_OUT Input/Output variable N/A := All formats

VAR_PUBLIC External variable N/A, or RETAIN Cannot be specified

Function block FB definition Example

Calling a function block with one input variable and one

output variable

FB name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Output variable1: OUT1

Calling a function block with three input variables and two

output variables

FB name: FBADD

FB instance name: FBADD1

Input variable1: IN1

Input variable2: IN2

Input variable3: IN3

Output variable1: OUT1

Output variable2: OUT2

FBADD1(IN1:=Input1);

Output1:=FBADD1_OUT1;

FBADD1(IN1:=Input1, IN2:=Input2, IN3:=Input3);

Output1:=FBADD1_OUT1;

Output2:=FBADD1_OUT2;

42
6 ST LANGUAGE

6.1 Configuration

■Function call statement

Assigning to variables stores the execution result of the function.

A user-defined function that does not return a value and a function that includes a VAR_OUTPUT variable in the argument of

a call statement can be executed as a statement by adding a semicolon (;) at the end.

■RETURN statement

A user-defined function that does not return a value and a function that includes a VAR_OUTPUT variable in the parameter of

a call statement can be executed as a statement by adding a semicolon (;) at the end.

Conditional statement

Format Description

Function name(Variable1, Variable2, ...); Enclose an argument by "()" after the function name.

When using multiple arguments, delimit them by "," (comma).

Function Example

Calling a function with one input variable (Example: ABS)

Calling a function with three input variables (Example:

MAX)

Calling a function with EN/ENO (excluding standard

functions) (Example: MAX_E)

Calling a standard function (Example: MOV)

(The execution result of the function is ENO and the first argument (Variable1) is EN.)

Syntax Format Description Example

■RETURN RETURN; The RETURN statement is used to end a program, function

block, or function in the middle of processing.

When the RETURN statement is used in a program, the

processing jumps to the next step after the last line of the

program.

When the RETURN statement is used in a function block, the

processing is returned from the function block.

When the RETURN statement is used in a function, the

processing is returned from the function.

One pointer type label is used by the system for one RETURN

statement.

Syntax Format Description Example

■IF IF <Boolean expression> THEN

<Statement> ;

END_IF;

The statement is executed when the value of Boolean

expression (conditional expression) is TRUE. The statement is

not executed if the value of Boolean expression is FALSE.

Any expression that returns TRUE or FALSE as the result of the

Boolean operation with a single bit type variable status, or a

complicated expression that includes many variables can be

used for the Boolean expression.

■IF...ELSE IF <Boolean expression> THEN

<Statement 1> ;

ELSE

<Statement 2> ;

END_IF;

Statement 1 is executed when the value of Boolean expression

(conditional expression) is TRUE.

Statement 2 is executed when the value of Boolean expression

is FALSE.

■IF...ELSIF IF <Boolean expression 1> THEN

<Statement 1> ;

ELSIF <Boolean expression 2> THEN

<Statement 2> ;

ELSIF <Boolean expression 3> THEN

<Statement 3> ;

END_IF;

Statement 1 is executed when the value of Boolean expression

(conditional expression) 1 is TRUE. Statement 2 is executed

when the value of Boolean expression 1 is FALSE and the

value of Boolean expression 2 is TRUE.

Statement 3 is executed when the value of Boolean expression

1 and 2 are FALSE and the value of Boolean expression 3 is

TRUE.

Outout1 := ABS(Input1);

Outout1 := MAX(Input1, Input2, Input3);

Output1 := MAX_E(boolEN, boolENO, Input1, Input2, Input3);

boolENO := MOV(boolEN, Input1, Output1);

IF bool1 THEN

RETURN;

END_IF;

IF bool1 THEN

intV1:=intV1+1;

END_IF;

IF bool1 THEN

intV3:=intV3+1;

ELSE

intV4:=intv4+1;

END_IF;

IF bool1 THEN

intV1:=intV1+1;

ELSIF bool2 THEN

intv2:=intV2+2;

ELSIF bool3 THEN

intV3:=intV3+3;

END_IF;

6 ST LANGUAGE

6.1 Configuration 43

6

Iteration statement

■CASE CASE <Integer expression> OF

<Integer selection 1> :

<Statement 1> ;

<Integer selection 2> :

<Statement 2> ;

<Integer selection n> :

<Statement n> ;

ELSE

<Statement n+1> ;

END_CASE;

When the statement that has the integer selection value that

matches with the value of the integer expression (conditional

expression) is executed, and if no integer selection value

matches with the expression value, the statement that follows

the ELSE statement is executed.

The CASE statement is used to execute a conditional statement

based on a single integer value or an integer value as the result

of a complicated expression.

Syntax Format Description Example

■FOR FOR <Repeat variable initialization>

TO <Last value>

BY <Incremental expression> DO

<Statement> ;

END_FOR;

The FOR...DO statement first initializes the data used as a

repeat variable.

An addition or subtraction is made to the initialized repeat

variable according to the incremental expression. One or more

statements from DO to END_FOR are repeatedly executed until

the final value is exceeded.

The repeat variable at the end of the FOR...DO syntax is the

value at end of the execution.

■WHILE WHILE <Boolean expression> DO

<Statement> ;

END_WHILE;

The WHILE...DO statement executes one or more statements

while the value of Boolean expression (conditional expression)

is TRUE.

The Boolean expression is evaluated before the execution of

the statement. If the value of Boolean expression is FALSE, the

statement in the WHILE...DO statement is not executed. Since

a return result of the Boolean expression in the WHILE

statement requires only TRUE or FALSE, any Boolean

expression that can be specified in the IF conditional statement

can be used.

■REPEAT REPEAT

<Statement> ;

UNTIL <Boolean expression>

END_REPEAT;

The REPEAT...UNTIL statement executes one or more

statements while the value of Boolean expression (conditional

expression) is FALSE.

The Boolean expression is evaluated after the execution of the

statement. If the value of Boolean expression is TRUE, the

statement in the REPEAT...UNTIL statement are not executed.

Since a return result of the Boolean expression in the REPEAT

statement requires only TRUE or FALSE, any Boolean

expression that can be specified in the IF conditional statement

can be used.

■EXIT EXIT; The EXIT statement is used only in an iteration statement to

end the iteration statement in the middle of processing.

When the EXIT statement is reached during execution of the

iteration loop, the iteration loop processing after the EXIT

statement is not executed. The processing continues from the

line after the one where the iteration statement is ended.

Syntax Format Description Example

CASE intV1 OF

1:

bool1:=TRUE;

2:

bool2:=TRUE;

ELSE

intV1:=intV1+1;

END_CASE;

FOR intV1:=0

TO 30

BY 1 DO

intV3:=intV1+1;

END_FOR;

WHILE intV1=30 DO

intV1:=intV1+1;

END_WHILE;

REPEAT

intV1:=intV1+1;

UNTIL intV1=30

END_REPEAT;

FOR intV1:=0

TO 10

BY 1 DO

IF intV1>10 THEN

EXIT;

END_IF;

END_FOR;

44
6 ST LANGUAGE

6.1 Configuration

Precautions

■When an assignment statement is used
 � The maximum number of character strings that can be assigned is 255. If 256 or more character strings are assigned, a

conversion error occurs.

 � Contacts and coils of the timer type or counter type cannot be used for the left side of an assignment statement.

 � The instance of a function block cannot be used for the left side of an assignment statement. Use input variables, input/

output variables, and external variables of the instance for the left side of an assignment statement.

■When an assigned arithmetic operation is used
When an arithmetic operation result is assigned to a variable of the larger data type, convert the variable of the arithmetic

operation to the data type of the left side in advance and execute the operation.

 When an arithmetic operation result of 16-bit data (INT type) is assigned to 32-bit data (DINT type)

The arithmetic operation result is the same data type as that of the input operand. Thus, in the case of the above program,

when the operation result of varInt1 * 10 exceeds the range of the INT type (-32768 to +32767), an overflow or underflow

result is assigned to varDint1.

In this case, convert the operand of the operational expression to the data type of the left side in advance and execute the

operation.

■Using the operator "-" for sign inversion in an arithmetic operation
When the operator "-" is used to invert the sign of the minimum value of a data type, the minimum value evaluates to the same

value.

For example, -(-32768), where the operator "-" is used with the minimum value of INT type, evaluates to -32768. Thus, an

unintended result may be produced if the operator "-" is used to invert the sign of a variable whose data type will be

automatically converted.

 When the value of varInt1 (INT type) is -32768, and the value of varDint1 (DINT type) is 0.

In the example above, the value of (-varInt1) evaluates to -32768 and -32768 is assigned to varDint2.

When using the operator "-" to invert the sign of a variable in an arithmetic operation, perform automatic conversion of the

data type of the variable before the arithmetic operation. Alternatively, avoid using the operator "-" for sign inversion in the

program.

 Performing automatic conversion of the data type before an arithmetic operation

 Avoiding the use of the operator "-" for sign inversion

Ex.

varDint1 := varInt1 * 10; // VarInt1 is a INT type variable, and varDint1 is a DINT type variable.

varDint2 := INT_TO_DINT(varInt1); // INT type variable is converted to DINT type variable.

varDint2 := varDint2 * 10; // DINT type multiplication is performed, and the operation result is assigned.

Ex.

varDint2 := -varInt1 + varDint1;

Ex.

varDint3 := varInt;

varDint2 := -varDint3 + varDint1;

Ex.

varDint2 := varDint1 - varInt1;

6 ST LANGUAGE

6.1 Configuration 45

6

■When a bit type label is used
Once the Boolean expression (conditional expression) is satisfied in a conditional statement or an iteration statement, the bit

type label that is turned ON in <Statement> is always set to ON.

 Program whose bit type label is always set to on

To avoid the bit device to be always set to ON, add a program to turn OFF the bit type label as shown below.

 Program to avoid the bit type label to be always set to ON

*1 The above program can also be described as follows.

bLabel2 := bLabel1;

or

OUT(bLabel1,bLabel2);

However, when the OUT instruction is used in <Statement>, the program status becomes the same as the program whose bit type label

is always set to on.

■When a timer function block or counter function block is used
Boolean expression (conditional expression) in a conditional statement differs for the execution conditions of the timer

function block or counter function block.

An error occurs when the program before change is used since the statement related to the timer or counter is not executed

when the selection statement is not satisfied.

ST program Ladder program equivalent to ST program

ST program*1 Ladder program equivalent to ST program

When a timer function block is used

Program before change

Program after change

When a counter function block is used

Program before change

Program after change

Ex.

IF bLabel1 THEN

bLabel2 := TRUE;

END_IF;

bLabel1

bLabel2SET

Ex.

IF bLabel1 THEN

bLabel2 := TRUE;

ELSE

bLabel2 := FALSE;

END_IF;

bLabel1 bLabel2

Ex.

IF bLabel1 THEN

TIMER_100_FB_M_1(Coil:=bLabel2,Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

END_IF;

(* When bLabel1 = on and bLabel2 = on, counting starts. *)

(* When bLabel1 = on and bLabel2 = off, the counted value is cleared. *)

(* When bLabel1 = off and bLabel2 = on, counting stops. The counted value is not cleared. *)

(* When bLabel1 = off and bLabel2 = off, counting stops. The counted value is not cleared. *)

TIMER_100_FB_M_1(Coil:=(bLabel1&bLabel2),Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

IF bLabel1 THEN

COUNTER_FB_M_1(Coil:=bLabel2,Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

END_IF;

(* When bLabel1 = on and bLabel2 = on/off, the value is incremented by 1. *)

(* When bLabel1 = off and bLabel2 = on/off, the value is not counted. *)

(* The counting operation does not depend on the on/off status of bLabel1. *)

COUNTER_FB_M_1(Coil:=(bLabel1&bLabel2),Preset:=wLabel3,ValueIn:=wLabel4,ValueOut=>wLabel5,Status=>bLabel6);

46
6 ST LANGUAGE

6.1 Configuration

When the timer or counter is operated according to the AND condition of bLabel1 and bLabel2, do not use any control

statement, just use a function block only.

Using the program after change operates the timer and counter.

■When the FOR...DO statement is used
 � Structure members and array elements cannot be used as repeat variables.

 � Match the type used for a repeat variable with the types of <Last value expression> and <Incremental expression>.

 � <Incremental expression> can be omitted. When omitted, <Incremental expression> is treated as 1 and executed.

 � When 0 is assigned to <Incremental expression>, the statements after the FOR syntax may not be executed or the

processing goes into an infinite loop.

 � In the FOR...DO syntax, the counting process of repeat variables is executed after the execution of <Statement> in the

FOR syntax. If the count is greater than the maximum value or smaller than the minimum value of the data type of the

repeat variable, the processing goes into an infinite loop.

■When a rising execution instruction or a falling execution instruction is used
Shown here is the operation when a rising execution instruction or an fall execution instruction is used in an IF statement or a

CASE statement.

*1 This is a fall (ON to OFF), but the instruction is not executed because the condition in the IF statement or the CASE statement is not

satisfied.

Condition Result of operation

Conditional

expression of an IF

statement or a

CASE statement

Condition to

execute an

instruction (EN)

Result of the ON/

OFF judgment of

the instruction at

the time of the

previous scan

Result of the ON/

OFF judgment of

the instruction

Rising execution

instruction

Falling execution

instruction

Agreement of TRUE or

CASE

TRUE ON ON Not executed Not executed

OFF ON Executed Not executed

FALSE ON OFF Not executed Executed

OFF OFF Not executed Not executed

Disagreement of FALSE

or CASE

TRUE ON OFF Not executed Not executed*1

OFF OFF Not executed Not executed

FALSE ON OFF Not executed Not executed*1

OFF OFF Not executed Not executed

 When the PLS instruction (rising execution instruction) is used in an IF statement

(1) If bLabel0 = OFF (the condition expression in the IF statement is

FALSE), the ON/OFF judgment result is OFF. The PLS instruction

is not executed. (bLabel10 = OFF does not change.)

(2) If bLabel0 = ON (the condition expression in the IF statement is

TRUE) and bLabel1 = OFF (the condition for executing the

instruction is OFF), the ON/OFF judgment result is OFF. The PLS

instruction is not executed. (bLabel10 = OFF does not change.)

(3) If bLabel0 = ON (the condition expression in the IF statement is

TRUE) and bLabel1 = ON (the condition for executing the

instruction is ON), the ON/OFF judgment result is OFF to ON (the

condition for a rise is satisfied). The PLS instruction is executed.

(bLabel10 turns ON for once scan only.)

Ex.

IF bLabel0 THEN

PLS(bLabel1,bLabel10);

END_IF;

ON

OFF

OFF

OFF

OFF

ON

(1) (2)

ON

ON

ON
(3)

bLabel0

bLabel10

bLabel1

1 scan

ON/OFF

judgment

result

6 ST LANGUAGE

6.1 Configuration 47

6

■When a master control instruction is used
Shown here is the operation when the master control is OFF.

 � The statement in a selection statement (an IF statement or a CASE statement) or in a iteration statement (a FOR

statement, a WHILE statement, or a REPEAT statement) is not processed.

 � Outside of a selection statement or a iteration statement, assignment statement is not processed and statement other than

assignment statement is not executed.

 A statement in a selection statement (IF statement)

 A statement out of a selection statement or a iteration statement (in the case of a bit assignment statement)

 A statement out of a selection statement or a iteration statement (in the case of an OUT instruction)

Constant

Methods for expressing constants

The following table shows the expression methods for setting a constant in a ST program.

For the expression methods other than the one described the above, refer to the following.

Page 30 Constant

Label and device

Specification method

Labels and devices can be directly described in the ST program. Labels and devices can be used for the left or right side of an

expression or as an argument or return value of a standard function/function block.

For available labels, refer to the following.

Page 22 LABELS

For available devices, refer to the following.

User's manual (Application)

■Device expression with type specification
A word device can be used in ST language as an arbitrary data type by adding a device type specifier to its name.

Data type Expressing method Example

String(32) STRING Enclose character strings with single quotation ('). Stest := 'ABC';

Device type specifier Data type Example Description

N/A Generic data type ANY16.

When only devices are used in arithmetic operations,

the data type is Word [signed].

However, when the data is specified as a device

without the type specification in the argument part of

FUN/FB, the data type is the one of the argument

definition.

D0 When no type specifier is added to D0

:U Word [Unsigned]/Bit String [16-bit] D0:U The value when D0 is Word [unsigned]/Bit string [16-bit]

:D Double Word [Signed] D0:D The value when D0 and D1 are Double word [signed]

:UD Double Word [Unsigned]/Bit String [32-bit] D0:UD The value when D0 and D1 are Double word [unsigned]/Bit

string [32-bit]

Ex.

MC(M0,N1,M1); //Master control OFF

IF M2 THEN

M3:=M4; //No processing is executed when the master control is OFF. So, M3 maintains the value at the time of a previous scan.

END_IF;

M20:=MCR(M0,N1);

Ex.

MC(M0,N1,M1); //Master control OFF

M3:=M4; //No processing is executed when the master control is OFF. So, M3 maintains the value at the time of a previous scan.

M20:=MCR(M0,N1);

Ex.

MC(M0,N1,M1); //Master control OFF

OUT(M2,M3); //No execution is made when the master control is OFF.

M20:=MCR(M0,N1);

48
6 ST LANGUAGE

6.1 Configuration

The following shows the devices to which device type specifiers can be added.

 � Data register (D)

 � Link register (W)

 � Module access device (U\G)

 � File register (R)

■Device specification method
The following methods can be used for specifying a device.

 � Indexing

 � Bit specification

 � Nibble specification

 � Indirect specification

For details, refer to the following.

User's manual (Application)

Programming manual (Instructions, Standard Functions/Function Blocks)

Precautions

 � The pointer type can be used for ST programs.

 � When a value is assigned using nibble specification, use the same data type for the left side and right side of an operation.

 D0 := K5X0;

In the above case, since K5X0 is the double word type and D0 is the word type, an error occurs in the program.

 � When a value is assigned using nibble specification and the data size of the right side is larger than that of the left side,

data is transmitted within the range of the target points of the left side.

 K5X0 := 2#1011_1101_1111_0111_0011_0001;

In the above case, since the target points of K5X0 is 20, 1101_1111_0111_0011_0001 (20 bits) are assigned to K5X0.

 � When the current value (such as TNn) of a counter (C), timer (T), or retentive timer (ST) is used with a type other than Word

[unsigned]/Bit string [16-bit], or when the current value (such as LCNn) of a long counter (LC) is used with a type other than

Double word [unsigned]/Bit string [32-bit], use the type conversion function.

 varInt := WORD_TO_INT(TN0); (*Use the type conversion function*)

Comment

The following table shows the comment formats that can be used in a ST program.

When the multiple-line comment format is used, do not use end symbols inside comments.

:E FLOAT (Single Precision) D0:E The value when D0 and D1 are single-precision real

numbers

Comment format Comment

symbol

Description Example

Single line comment // The character strings between the start symbol "//" and the end of the

line are used as a comment.

// Comment

Multiple-line comment (* *) The character strings between the start symbol "(*" and the end symbol

"*)" are used as a comment.

Newlines can be inserted in the comment.

■Without newline

(* Comment *)

■With newline

(* Comment in the first line

Comment in the second line *)

/* */ The character strings between the start symbol "/*" and the end symbol

"*/" are used as a comment.

Newlines can be inserted in the comment.

■Without newline

/* Comment */

■With newline

/* Comment in the first line

Comment in the second line */

Device type specifier Data type Example Description

Ex.

Ex.

Ex.

7 FBD/LD language

7.1 Configuration 49

7

7 FBD/LD language

This is a language that creates a program by wiring blocks for specific processing, variables, and constants along with the

flows of data and signals.

7.1 Configuration

With the FBD/LD language, the following program can be created.

In a program of the FBD/LD language, data flows from the output point of a function block (FB), a function (FUN), a variable

unit (label or device), and constant unit to the input point of another function block, variable unit, and so forth.

(1) FBD unit

(2) LD unit

(3) Common unit

(4) Connecting wire

(5) Connecting point

(6) Worksheet

(4)(1)

(3)

(2)
(5)

(6)

50
7 FBD/LD language

7.1 Configuration

Program unit

FBD unit

Units constituting FBD/LD program are shown below.

■The data type of a constant unit
In the case of a constant unit, the data type of the constant value is not determined at the time when the constant value is

input. The data type is determined when the constant unit and an FBD unit are connected over a connecting wire. The data

type of the constant value is the same data type as the FBD unit at the destination of the connecting wire.

■Automatic conversion of data types
The data type of an element may be automatically converted when it is connected to another element of a different data type.

To avoid the deletion of the data during the type conversion, only conversion from smaller type to larger type is performed.

Automatic conversion of data type in the FBD/LD language behaves in the same way as that in the ST language. For details,

refer to the following.

Page 40 Automatic conversion of data types

Unit Symbol Description

Variable A variable is used to store each value (data). The data type of a variable should be a certain type.

Only the value (data) of the data type is stored.

You can specify a label or a device to a variable.

Constant The constant specified is output.

Function (FUN) Executes a function.

� How to create functions (GX Works3 Operating Manual)

� Standard function (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

Function Block (FB) Executes a function block.

� How to create function blocks (GX Works3 Operating Manual)

� Standard function blocks (MELSEC iQ-F FX5 Programming Manual (Instructions, Standard

Functions/Function Blocks))

� Module function blocks (MELSEC iQ-F FX5 CPU Module Function Block Reference)

When 1 is input as a constant value

The data type can be a BOOL type, a WORD type, a DWORD type, an INT type, a DINT type, or a REAL type. So, the

data type is not determined. When the constant unit and an FBD unit are connected over a connecting wire, the data

type becomes the data type at the input point of the unit at the destination of the connection.

(1) The data type is not determined.

(2) INT type

(3) INT type

Ex.

1

(1)

1

(2)

INT_TO_REAL

IN

(3)

7 FBD/LD language

7.1 Configuration 51

7

■The input/output point of a function
 � It is necessary that all the input points of a function should be connected to other FBD units over connecting wires.

 � The data types of the input variables and output variables of a function should be of certain types. It is necessary that the

FBD units to be connected to the input point or output point should be of the same data types.

 � Connect a variable element between an output variable (except for ENO) of a CPU module instruction or module dedicated

instruction and an input variable of another function (or function block).

 � In a program that connects a function with EN to another function over a connecting wire, the other function must be a

function with EN and the program must connect ENO and EN over a connecting wire, in order to prevent the function from

using an indefinite value.

LD unit

Units of ladder diagram that can be used in a program of the FBD/LD language are shown below.

Unit Symbol Description

Left bus This is an unit to represent a bus. This is the starting point to create a ladder circuit.

NO contact Turns on when a specified device or label is ON.

NC contact Turns on when a specified device or label is OFF.

Rising edge Turns on at the rising edge (OFF to ON) of a specified device or label.

Falling edge Turns on at the falling edge (ON to OFF) of a specified device or label.

Negated rising edge Turns on when a specified device or label is OFF or ON, or at the falling edge (ON to OFF) of a

specified device or label.

Negated falling edge Turns on when a specified device or label is OFF or ON, or at the rising edge (OFF to ON) of a

specified device or label.

Coil Outputs an operation result to a specified device or a label.

Complementing coil When the operation result turns OFF, the specified device or label turns ON.

Set When the operation result turns ON, the specified device or label turns ON.

The device or the label that turns ON remains ON even if the operation result turns OFF.

Reset When the operation result turns ON, the specified device or label turns OFF.

When the operation result is OFF, the status of the device or the label does not change.

AND_E

EN

IN1

IN2

ENO

AND_E

EN

IN1

IN2

ENO

BOOL_OUT_DATA1

BOOL_EN_DATA

bLabel1

bLabel2

bLabel3

(1)

(1) Connect ENO and EN over a connecting wire.

52
7 FBD/LD language

7.1 Configuration

■The AND operation and OR operation of a contact symbol
A contact symbol executes an AND operation or an OR operation depending on the status of the connection of a circuit chart.

This is reflected in the operation result.

 � In the case of a series connection (1), an AND operation is executed with the operation results so far. This will be the

operation result.

 � In the case of a parallel connection (2), an OR operation is executed with the operation results so far. This will be the

operation result.

Common unit

This represents a common unit placed on the FBD/LD editor.

■Precautions for a jump unit
 � If the timer of a coil that is ON is jumped over by using a jump unit, a normal measurement cannot be conducted.

 � You can add a jump label on the top side (the execution is earlier) of a jump unit. In this case, create the program by

including a method to break the loop in order not to exceed the setting value of the watchdog timer.

 � You can specify only a local label of a pointer type for a jump element and jump label. Pointer devices cannot be used.

 � The pointer branch instruction (CJ) cannot be used. For jumping, use jump elements.

 � Jumps to or from outside the program block cannot be executed. The following is a list of jump operations that cannot be

executed.

- Jumping to outside the program block *1

- Jumping from outside the program block*1

- Calling subroutine programs

- Called as subroutine programs

*1 Includes branches caused by the BREAK instruction.

Unit Symbol Description

Jump The execution processing is jumped over from a jump unit to a jump label. The portion that is

jumped over is not executed.

Whether a jump is made or not is controlled depending on the ON/OFF information to the jump unit.

ON: The execution processing is jumped over up to a jump label.

OFF: The execution processing is not jumped over but is executed.

Jump label This is the destination of a jump from a jump instruction in the same program. The processing is

executed from a program in the execution order after the jump label.

Connector This is used as a substitute of a connecting wire.

The processing moves on to the corresponding connector unit.

You can use one input connector or multiple input connectors for one output connector.

Return The processing after a return unit in the program is aborted. Use this when you want to prohibit the

execution of the processing of a program, function, or a function block after the return unit.

Whether the return processing is executed or not is controlled depending on the ON/OFF

information to the return unit.

ON: The return processing is executed.

OFF: The return processing is not executed, but the ordinary execution processing is executed.

Comment Use this to describe a comment.

(1) Series connection contact

(2) Parallel connection contact

7 FBD/LD language

7.1 Configuration 53

7

■The operation of a return unit
A return unit operates differently depending on whether a program, function, and/or function block used there.

If a return element is used in a macro-type function block, do not place two or more function block elements of the same

instance name.

A local label "_SYSTEM_RETURN" is automatically registered when a program using a return element is converted.

The local label "_SYSTEM_RETURN" has the following operational limitations:

*1 If the program is converted again after change or deletion, a new local label is registered.

■Connector unit
Use a connector element to place the program within the display area or print area of the FBD/LD editor.

Connecting wire

This is the wire to connect the connecting points between FBD unit, LD unit, and common unit.

After units are connected, the data is transferred from the left end to the right end. The data types of the connected units need

to be the same.

Connecting point

This is a terminal point to use a connecting wire to connect FBD unit, LD unit, and common unit.

The point on the left side of each unit is the input side, while the point on the right side represents the output side.

The connecting point is hidden after connecting a wire.

Program unit to use

Program The execution of the program unit is terminated.

Function The function is terminated, and the step goes back to the one next to the instruction that has called the function.

Function block The function block is terminated, and the step goes back to the one next to the instruction that has called the function

block.

Operation on the label automatically registered Permitted/Prohibited

Changing the label name Prohibited*1

Changing the data type Prohibited

Changing the class Prohibited

Deleting the label Prohibited*1

Changing the line of registration Permitted

Unit Input connecting

point

Output connecting

point

Unit Input connecting

point

Output connecting

point

Contact Coil

Variable Constant

Function

The return value is not

shown on a function.

Function Block

CONNECTOR

Var1 Var2 Var3 Var4 Var5

CONNECTOR

Var6 Var7 Var8 Coil1

54
7 FBD/LD language

7.1 Configuration

■Inverting input and output points

Worksheet

A worksheet is a work area for inserting program units and for connecting them with wires.

Constant

Methods for expressing constants

The following table shows the expression methods for setting a constant in FBD/LD language.

For the expression methods other than the one described the above, refer to the following.

Page 30 Constant

Labels and devices

Specification method

You can directly describe and use labels and devices in an FBD/LD program. You can use labels and devices for inputs and

output points of units, for arguments of standard functions/function blocks, return values, and so forth.

For available labels, refer to the following.

Page 22 LABELS

For available devices, refer to the following.

User's manual (Application)

■Device expression with type specification
A word device can be used as any data by adding a device type specifier to its name. If you do not specify a data type, the

word device operates as a word [signed] (INT).

For the device type specifiers and the devices you can use, refer to the following.

Page 47 Device expression with type specification

If you do not specify a data type for a word device, the data type is determined by the type of device.

Caution

■When using label
 � Labels whose name ends with "_" cannot be used as an array index. To use such a device or label as an array index,

assign it to another device or label and specify that device or label as an index.

 � Members of labels (structures or function blocks) whose name ends with "_" cannot be specified.

 � Indexes cannot be specified to labels (arrays) whose name ends with "_".

You can invert an input to an unit or an output from an unit by using a connecting point.

The connecting point having been inverted is circled with a black circle. The data to be input or

output is inverted (FALSE to TRUE or TRUE to FALSE).

You can invert the following data types: BOOL, WORD, DWORD, ANY_BIT, and ANY_BOOL.

Data type Expressing method Example

String(32) STRING Enclose character strings with single quotation (').

Word device Data type

The current value of a timer device (TN), the current value of a retentive timer device (STN), the current value of a

counterr device (CN)

WORD

The current value of a long counter device (LCN) DWORD

Other than the above INT

‘ABC’

7 FBD/LD language

7.2 Program execution order 55

7

7.2 Program execution order

The order of executions of program units

The order of executions of the units in the FBD/LD editor is determined depending on the positional relation of the units and

on the status of connecting wires.

The number of the order of the execution is shown on each unit placed on the FBD/LD editor.

CTD_E

EN

CD

LD

ENO

Q

PV

QV

Var_CU

Var_R

Var_PV

CTD_E_1

Var_Q

Var_CV

RETURN

M0

SM400

SM400

Y0

2 3

5

7

9

11
13

15

17

19 20

1

4

18

6

8

10

14

16

12

Executed from

the left side to

the right side

Executed from

the top to the

bottom

ADD

IN1

IN2

Var001

Var002

Var003

23
25

2721
22

26

24

56

INDEX

Symbols

- . 39
* . 39
**. 39
/ . 39
& . 39
+ . 39
< . 39
<= . 39
<> . 39
= . 39
> . 39
>= . 39
$. 30

A

AND . 39
Arrays of structures . 29
Assignment statement . 40

B

Bit . 23
BOOL . 23

C

CASE . 43
Class . 23,25
Common unit . 49,52
Connecting point . 49,53
Connecting wire . 49,53
Constant . 30
Constant unit . 50
COUNTER . 24
Counter . 24

D

Data type . 23,24,25
Device assignment . 22
DINT . 23
Double Word [Signed] . 23
Double Word [Unsigned]/Bit String [32-bit] 23
DWORD . 23

E

EN. 13,18
ENO . 13,18
EXIT . 43
External variable . 17

F

FB/FUN file . 13,14,18,19
FBD unit . 49,50
FBD/LD language . 7,49
FLOAT [Single Precision]. 23
FOR . 43

FOR...DO .46
Function (FUN). 11,12
Function Block (FB) 11,16
Function block call statement41
Function call statement .42

G

Generic data type (ANY)25
Global label . 23,25
Global labels .22

I

IF .42
IF ...ELSE .42
IF ...ELSIF .42
Input variable . 12,16
Input/output variable .16
Instances .17
INT .23
Internal variable .17
Interrupt program .10

L

Ladder diagram . 7,33
LCOUNTER .24
LD unit . 49,51
Local label .22,23,25
Long Counter .24

M

Macro type function blocks 19
Main routine program .10
MOD .39
Module labels. .22

N

NOT .39
Notes .36
Number of array elements27
Number of steps .14

O

OR .39
Output variable. 12,16

P

POINTER .24
Pointer .24
Program .9,13,18
Program block .10
Program file .9
Programming languages .7
Project. .9

57

I

R

REAL. 23
REPEAT . 43
Reserved word . 38
Retentive Timer . 24
RETENTIVETIMER . 24
RETURN . 42

S

ST language. 7,37
Statements. 36
STRING . 24,47,54
String. 24,47,54
Structures . 24,28
Subroutine program . 10
Subroutine type function blocks 19,20
System labels . 22

T

TIME . 24
Time . 24
TIMER . 24
Timer . 24
Type conversion . 40
Type specification . 47

W

WHILE . 43
WORD . 23
Word [Signed]. 23
Word [Unsigned]/Bit String [16-bit] 23
Worksheet . 49,54

X

XOR . 39

58

REVISIONS

© 2014 MITSUBISHI ELECTRIC CORPORATION

Revision date Revision Description

October 2014 A First Edition

January 2015 B ■Added functions

FBD/LD language

■Added or modified parts

Chapter 1, Section 3.1, 3.2, 4.1, 4.3, 4.4, 4.5, 5.2, 5.3, Chapter 6, 7

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot

be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

59

WARRANTY

1.

Please confirm the following product warranty details before using this product.

[Gratis Warranty Term]

If any faults or defects (hereinafter "Failure") found to
be the responsibility of Mitsubishi occurs during use of
the product within the gratis warranty term, the
product shall be repaired at no cost via the sales
representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or
overseas location, expenses to send an engineer will
be solely at the customer's discretion. Mitsubishi shall
not be held responsible for any re-commissioning,
maintenance, or testing on-site that involves
replacement of the failed module.

Overseas, repairs shall be accepted by Mitsubishi's
local overseas FA Center. Note that the repair
conditions at each FA Center may differ.

The gratis warranty term of the product shall be for
one year after the date of purchase or delivery to a
designated place. Note that after manufacture and
shipment from Mitsubishi, the maximum distribution
period shall be six (6) months, and the longest gratis
warranty term after manufacturing shall be eighteen
(18) months. The gratis warranty term of repair parts
shall not exceed the gratis warranty term before
repairs.

[Gratis Warranty Range]

The range shall be limited to normal use within the
usage state, usage methods and usage
environment, etc., which follow the conditions and
precautions, etc., given in the instruction manual,
user's manual and caution labels on the product.

1)

Even within the gratis warranty term, repairs shall
be charged for in the following cases.

2)

Failure occurring from inappropriate storage or
handling, carelessness or negligence by the
user. Failure caused by the user's hardware or
software design.

a)

Failure caused by unapproved modifications,
etc., to the product by the user.

b)

Mitsubishi shall accept onerous product repairs for
seven (7) years after production of the product is
discontinued.
Discontinuation of production shall be notified with
Mitsubishi Technical Bulletins, etc.

1)

Product supply (including repair parts) is not
available after production is discontinued.

2)

In using the Mitsubishi MELSEC programmable
controller, the usage conditions shall be that the
application will not lead to a major accident even if
any problem or fault should occur in the
programmable controller device, and that backup
and fail-safe functions are systematically provided
outside of the device for any problem or fault.

1)

The Mitsubishi programmable controller has been
designed and manufactured for applications in
general industries, etc. Thus, applications in which
the public could be affected such as in nuclear
power plants and other power plants operated by
respective power companies, and applications in
which a special quality assurance system is
required, such as for railway companies or public
service purposes shall be excluded from the
programmable controller applications.
In addition, applications in which human life or
property that could be greatly affected, such as in
aircraft, medical applications, incineration and fuel
devices, manned transportation, equipment for
recreation and amusement, and safety devices,
shall also be excluded from the programmable
controller range of applications.
However, in certain cases, some applications may
be possible, providing the user consults their local
Mitsubishi representative outlining the special
requirements of the project, and providing that all
parties concerned agree to the special
circumstances, solely at the user's discretion.

2)
When the Mitsubishi product is assembled into
a user's device, Failure that could have been
avoided if functions or structures, judged as
necessary in the legal safety measures the
user's device is subject to or as necessary by
industry standards, had been provided.

c)

Failure that could have been avoided if
consumable parts (battery, backlight, fuse,
etc.) designated in the instruction manual had
been correctly serviced or replaced.

d)

Relay failure or output contact failure caused
by usage beyond the specified life of contact
(cycles).

e)

Failure caused by external irresistible forces
such as fires or abnormal voltages, and failure
caused by force majeure such as earthquakes,
lightning, wind and water damage.

f)

Failure caused by reasons unpredictable by
scientific technology standards at time of
shipment from Mitsubishi.

g)

Any other failure found not to be the
responsibility of Mitsubishi or that admitted not
to be so by the user.

h)

2. Onerous repair term after discontinuation
of production

Gratis Warranty Term and Gratis Warranty
Range

4. Exclusion of loss in opportunity and
secondary loss from warranty liability

3. Overseas service

The specifications given in the catalogs, manuals or
technical documents are subject to change without
prior notice.

5. Changes in product specifications

6. Product application

Regardless of the gratis warranty term, Mitsubishi
shall not be liable for compensation of damages
caused by any cause found not to be the responsibility
of Mitsubishi, loss in opportunity, lost profits incurred
to the user or third person by failure of Mitsubishi
products, special damages and secondary damages
whether foreseeable or not, compensation for
accidents, and compensation for damages to products
other than Mitsubishi products, replacement by the
user, maintenance of on-site equipment, start-up test
run and other tasks.

60

TRADEMARKS
Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or

other countries.

Ethernet is a trademark of Xerox Corporation.

MODBUS is a registered trademark of Schneider Electric SA.

The company name and the product name to be described in this manual are the registered trademarks or trademarks of

each company.

HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

HIMEJI WORKS: 840, CHIYODA MACHI, HIMEJI, JAPAN

Specifications are subject to change without notice.

When exported from Japan, this manual does not require application to the

Ministry of Economy, Trade and Industry for service transaction permission.

Manual number: JY997D55701B

Model: FX5-P-PS-E

Model code: 09R538

	SAFETY PRECAUTIONS
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	1 OUTLINE
	2 PROGRAM CONFIGURATION
	2.1 Program Block

	3 PROGRAM ORGANIZATION UNIT (POU)
	3.1 Function (FUN)
	3.2 Function Block (FB)

	4 LABELS
	4.1 Type
	4.2 Class
	4.3 Data Type
	4.4 Arrays
	4.5 Structures
	4.6 Constant
	4.7 Precautions

	5 LADDER DIAGRAM
	5.1 Configuration
	Ladder symbols
	Program execution order

	5.2 Inline ST
	5.3 Statements and Notes

	6 ST LANGUAGE
	6.1 Configuration
	Delimiter
	Operator
	Syntax
	Constant
	Label and device
	Comment

	7 FBD/LD language
	7.1 Configuration
	Program unit
	Worksheet
	Constant
	Labels and devices

	7.2 Program execution order
	The order of executions of program units

	INDEX
	REVISIONS
	WARRANTY
	TRADEMARKS

